NOTES

We have been studying four types of transformations. Each type can be identified by looking at a specific part of the function equation. The table below lists each type of transformation and identifies where to look.

FLIP

 Sign at the beginning of the equation| STRETCH/COMPRESSION | |
| :---: | :---: |
| Number at the beginning of | |
| the equation. | |
| | |
| Stretch | Compression |
| $n>1$ | $0<n<1$ |
| \times | \times |

HORIZONTAL
Number inside parentheses, absolute value bars or under the radical sign.

Left	Right
+	-

VERTICAL
Number outside the parentheses, absolute value bars or radical sign.

Up	Down
+	-

Let's look at the function $g(x)=-4(x-2)^{3}+5$. Four transformations have been applied to the parent function $f(x)=x^{3}$.

Flip	Stretch	Right	Up
-	Factor of 4	2	5

By looking at specific parts of this equation we can determine that the function was flipped over the x-axis, stretched by a factor of 4 , shifted right 2 and up 5. Now let's take the function $g(x)=-4(x-2)^{3}+5$ and apply more transformations to it. For example, what would this equation look like if we wanted to flip it back over the x-axis, stretch by a factor of 2 , shift it left 1 and down 2?

	Flip	Str/Cmp	L/R	U/D
Where to look	Sign	Number in front	Inside	outside
Current Value	-	4	$(x-2)^{3}$	+5
What to do	Change	Multiply by 2	Add 1	Subtract 2
New value	+	8	$(x-1)^{3}$	+3

So the new equation is $p(x)=8(x-1)^{3}+3$

More Examples

Original Equation
$y=4 x^{2}+4$
$y=4 x^{2}+4$

Transformations

Flip over x axis, shift right 3 and down 2

Stretch by a factor of 4, left 5 and up 3.
$y=-|x-7| \quad$ Flip over x axis, compression by factor of $\frac{1}{3}$ up 8

	F	S/C	L/R	U/D
C	+	4	0	4
T	-		-3	-2
N	-	4	-3	2

	\mathbf{F}	\mathbf{S} / \mathbf{C}	\mathbf{L} / \mathbf{R}	\mathbf{U} / \mathbf{D}
C	+	$\frac{1}{2}$	+1	-2
		$\frac{2}{2}$		
T		4	+5	+3
N	+	2	+6	+1

Transformed Equation

	F	S/C	L/R	U/D
C	-	1	-7	0
T	-	$\frac{1}{3}$	0	+8
N	+	$\frac{1}{3}$	-7	+8

$y=-4(x-3)^{2}+2$
$y=\frac{1}{3}|x-7|+8$

PRACTICE PROBLEMS - Fill in the missing column.

	Original Equation	Transformations	New Equation
1	$f(x)=x^{2}$	Stretch by a factor of 3 Left 3 Down 2	
2	$y=\sqrt{x}$	Flip over xaxis Right 2 Up 1 Compression by factor of $\frac{2}{7}$	
3	$y=\|x\|$		$y=-\frac{1}{2}\|x-2\|+1$
4	$y=3 \sqrt{x}+2$	Left 7 Down 3 Compression by factor of $\frac{2}{3}$	
5	$f(x)=0.5\|x-2\|$	Stretch by factor of 2 Right 2 Down 3	
6	$g(x)=-x^{3}-2$	Flip over x-axis Right 4 Up 2	
7	$g(x)=-x^{3}-2$		$q(x)=(x-3)^{3}-1$
8	$f(x)=\|x-1\|+3$		$p(x)=-\|x+2\|+1$
9	$y=4 \sqrt{x-1}+7$	Stretch by a factor of 2 Flip over the x axis Left 2 Up 3	
10	$f(x)=-(x+3)^{2}-1$	Right 10 Up 5 Stretch by a factor of 4	
11	$g(x)=x^{3}+7$	Flip over x-axis Right 10 Compression by a factor of . 01	
12	$y=4\|x+2\|$		$y=2\|x-2\|$

