Lines, Transversals and Angles		
Parallel	Find the angle measures. Create an equation setting appropriate angles equal to each other. Use $8 x-4=60$ and solve for x .	1.
Congruent Angles Vertical: 1 and 4,2 and 3,5 and 8,6 and 7 Alternate Interior: 3 and 6, 4 and 5 Alternate Exterior: 2 and 7,1 and 8 Corresponding: 2 and 6,4 and 8,1 and 5, 3 and 7.	2.	3.

Congruent Triangles

Triangles can be declared congruent if one of the following conditions are true.

State which congruency theorem applies to the triangle pictured.

Similar Triangles ~

Triangles are similar if their corresponding (matching) angles are congruent and the ratio of their corresponding sides are in proportion. The following Similarity Theorems can be used to prove similarity.

SSS, SAS and AAA (or AA)

Given the folliowing sets of triangles are congruent, find the value of x .

CIRCLES: Angle Measures

Central Angle $=$ Intercepted Arc $m \Varangle A O B=m \overparen{A B}$ $\angle A O B$ is a central angle. Its intercepted arc is the minor arc from A to B. $m<A O B=80^{\circ}$	24. Find $m \widehat{C F D}$	25.. Find $m \angle V S T$
Inscribed Angle $=\frac{1}{2}$ Intercepted Arc $m \Varangle A B C=\frac{1}{2} m \overparen{A C}$ $\angle A B C$ is an inscribed angle. Its intercepted are is the minor arc from A to C.	26.Find x	27. Find $m \widehat{F G H}$
Tangent Chord Angle $=$ $\frac{1}{2}$ Intercepted Arc $m \Varangle A B C=\frac{1}{2} m \overparen{A B}$ $\angle A B C$ is an angle formed by a tangent and chord. Its intercepted arc is the minor arc from A to B.	28. Find the indicated angle measure.	29. Solve for x .
Angle Formed Inside by Two Chords = $\frac{1}{2}$ Sum of Intercepted Arcs $m \Varangle B E D=\frac{1}{2}(m \overparen{A C}+m \overparen{B D})$ $\mathrm{m}<\mathrm{BED}=\frac{1}{2}(70+170)=\frac{1}{2}(240)=120^{\circ}$ also, $m \angle C E A=120^{\circ}$ (vetical angle) $m<B E C$ and $m \angle D E A=60^{\circ}$ by straight line.	30. Find the indicated angle.	31. Find $m \angle Q P R$

The formulas for all THREE of these situations are the same: Angle Formed Outside $=\frac{1}{2}$ Difference of Intercepted Arcs

(When subtracting, start with the larger arc.)

Two Tangents: $\angle A B C$ is formed by two tangents intersecting outside of circle O. The intercepted arcs are minor arc $\widehat{A C}$ and major arc $\widehat{A C}$ These two arcs together comprise the entire circle. $\mathrm{m} \angle \mathrm{ABC}=\frac{1}{2}(260-100)=80^{\circ}$ $m \Varangle A B C=\frac{1}{2}(\underset{m A C}{\text { major }}-m \overline{A C})$	32. Solve for x .	33. Find $m \angle B D$
Two Secants: $\angle A C E$ is formed by two secants intersecting outside of circle O. The intercepted arcs are minor arcs $\overparen{B D}$ and $\overparen{A E}$. $\mathrm{m} \angle \mathrm{ACE}=\frac{1}{2}(80-20)=30^{\circ}$ $m \Varangle A C E=\frac{1}{2}(m \widehat{A E}-m \widehat{B D})$	34. Find the measure of the indicated angle.	35. Solve for x . $12 x+8$
a Tangent and a Secant: $\angle A B D$ is formed by a tangent and a secant intersecting outside of circle O. The intercepted arcs are minor arcs $\widehat{A C}$ and $\overparen{A D}$ $\mathrm{m} \angle \mathrm{ABD}=\frac{1}{2}(100-30)=35^{\circ}$ $m \Varangle A B D=\frac{1}{2}(m \widehat{A D}-m \widehat{A C})$	36. Find $m \widehat{P S}$	37. Find $m \angle D E G$

CIRCLES: Chord and Segment Lengths		
Intersecting Chords Rule: (segment piece) \times (segment piece) $=$ (segment piece) \times (segment piece) $a \cdot b=c \cdot d$	38. Solve for x.	39. Find UW
Secant-Secant Rule: (whole secant) \times (external part) $=$ (whole secant) \times (external part) $a \cdot b=c \cdot d$	40. Solve for x.	41. Find CE
Secant-Tangent Rule: (whole secant) \times (external part) $=$ $(\text { tangent })^{2}$ $b \cdot c=a^{2}$	42. Find HG	43. Find NM
Parts of a Circle		
Two circle formulas you should already know: $\begin{gathered} \text { Circumference }=2 \pi r \\ \text { Area }=\pi r^{2} \end{gathered}$ An ARC is a portion of the circumference of a circle. It can be referred to by its length or measure. Arcs with a measure less that 180° are minor arcs. Arcs with a measure greater than 180° and considered the major arc.		
ARC MEASURE is equal to the central angle that intercepts the ARC. ARC LENGTH is a portion of the circumference of a circle. $L=\frac{n}{360} 2 \pi r$	44. Given $m \widehat{F K N}=168^{\circ}, m \widehat{U F}=34^{\circ}$. Find $m \widehat{U N}$	
AREA OF A SECTOR: Portion of the area of a circle. $A=\frac{n}{360} \pi r^{2}$ where n is the number of degrees in the central angle of the sector.	45. Find the area of a sector with a central angle of 60° and a radius of 10.	46. Find the area of a sector with an arc length of 75 .

Equations of Circles

Circle whose center is at the origin
Equation: $x^{2}+y^{2}=r^{2}$
Example: Circle with center (0,0), radius 4
Graph:
$x^{2}+y^{2}=16$

Circle whose center is at (h, k)

(This will be referred to as the "center-radius form". It may also be referred to as "standard form".) Equation: $(x-h)^{2}+(y-k)^{2}=r^{2}$
Example: Circle with center $(0,0)$, radius 4 Example: Circle with center $(2,-5)$, radius 3
$(x-2)^{2}+(y+5)^{2}=9$
Graph:

47. Find the cener and radius of this circle. Then graph.

$$
(x-1)^{2}+(y+4)^{2}=9
$$

Finding Equations of Circles

Writing the equation of a circle from the endpoint of the diameter; find the center by using the midpoint formula, find the radius by using the distance formula. Substitute this information into the formula for a circle.

Example: Find the equation of the circle whose diameter has endpoints $(-6,7)$ and $(4,-1)$

Find the center by using the midpoint formula.

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{-6+4}{2}, \frac{7+(-1)}{2}\right)
$$

48. Write the equation of a circle whose endpoints of a diameter are $(18,-13)$ and $(4,-3)$.

$$
=(-1,3)
$$

Find the radius by using the distance formula.
Points $(-6,7)$ and $(-1,3)$ were used here. ($d=$ distance, or radius)

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-6-(-1))^{2}+(7-3)^{2}} \\
& =\sqrt{(-5)^{2}+(4)^{2}}=\sqrt{25+16}=\sqrt{41}
\end{aligned}
$$

Example: Write the equation for the circle shown below if it shifted 3 units to the right and 4 units up.

A shift of 3 units to the right and 4 units up places the center at the point $(3,4)$. The radius of the circle can be seen from the graph to be 5.

Equation: $(x-3)^{2}+(y-4)^{2}=25$
49. Write the equation of the circle pictured at the left if it is shifted left 7 and down 4.
50. Write the equation of a circle whose center is the point (-13,16) with a point on the circle at $(-10,-16)$.

