Math III Trigonometry Unit – Study Guide

Math III Trigonometry Unit – Study Guide

8 1 1		
Using the Unit Cirde	7. Find sin 60	9. Find $tan \frac{3\pi}{4}$
$\cos\theta = x coordinate$		4
$\sin \theta = y coordiante$	8. Find cos – 270	10 Find $\sin 4\pi$
$\tan \theta = \frac{y}{2}$		10. Find $sin \frac{1}{3}$
$\frac{x}{x}$		

The Six Trigonometric Functions							
sin $ heta$	opposite	1		csc θ	hypotenuse	1	
	hypotenuse	$\overline{\csc\theta}$			opposite	$\sin \theta$	
	adjacent	1		sec $ heta$	hypotenuse	1	
COSO	hypotenuse	$\sec \theta$			adjacent	cosθ	
ton 0	opposite	1	sin $ heta$	$\frac{\theta}{\theta}$ cot θ	adjacent	1	cosθ
tan o	adjacent	$\overline{\cot\theta}$	$\cos\theta$		opposite	$\tan \theta$	$\sin \theta$
Pythagorean Identities							
$sin^2\theta + cos^2\theta = 1$		To derive the other two versions of the Pythagorean Identity first divide each					
		term my $sin^2\theta$ and then simplify. Repeat the process for the third version by					
		dividing each term by $cos^2\theta$.					
Derive the other two Pythagorean Identities below.							
11.				12.			

Trig Expressions and Identities				
<u>Steps for Simplifying -</u> Objective: One trigonometric function.	13. Simplify $\frac{\sin\theta}{\csc\theta}$			
Convert all functions into sine and cosine using the identities from the table above.	14. Simplify sec θ — tan θ sin θ			
Try combining fractions that are added or subtracted into one fraction.				
Separate fractions with one term in the denominator into multiple fractions and simplify the smaller fractions.	15. Verify the identity $cos^2\theta - sin^2\theta = 1 - 2sin^2\theta$			
Look for opportunities to substitute $sin^2\theta + cos^2\theta$ for 1 in the expression.	16.Verify the identity $\frac{1+\cos\theta}{\sin\theta} = \csc\theta + \cot\theta$			
Solving – Objective, get both side the same				
Remember there is a brick wall between each side of the equation.	17. Verify the identity $\frac{\tan\theta}{\sec\theta} + \frac{\cot\theta}{\csc\theta} = \sin\theta + \cos\theta$			
Start with the more complicated side. Simplify the expression using the methods described above.				

Math III Trigonometry Unit – Study Guide

Analyzing Trigonometric Graphs

Amplitude is the half the distance between the max y value and the min y value.

Period is the distance on the x axis it takes for the function to repeat a full pattern. Remember the following patterns

Sine, no flip:Zero, Max, Zero Min, ZeroSine flipped:Zero, Min, Zero, Max, ZeroCosine, no flipMax, Zero, Min, Zero, MaxCosine, flippedMin, Zero, Max, Zero, Min

Phase shift, determine which function you are starting with, cosine or sine. Cosine normally starts at y=1 and Sine starts a y=0. Looking at the graph, determine if you have shifted left or right from the normal starting position. The opposite of the x value of the initial point is your phase shift (or horizontal shift)

Vertical Shift, normally the sine and cosine functions are centered around the x axis. To find the center line of a function subtract the max y value from the min y value. This will give you the value of your vertical shift.

To write the equation use the information determined above. If you have a flip remember to put a negative infront of the equation.

Write the equation for the following <u>sine</u> graphs. 24.

Write the equation for the following cosine graphs.

