Rationals

Rationals

Multiplying

Step 1: Factor all numerators and denominators.

Step 2: Cancel out common factors of the numerators and denominators.

Step 3: State any restrictions on the variable. (Values that would cause the original denominator to equal zero.)

$= \frac{(v-10)(v+3)}{(v-8)(v+3)} \times \frac{v+8}{4(v-10)}$ = $\frac{(v-10)(v+3)}{(v-8)(v+3)} \times \frac{v+8}{4(v-10)}$ = $\frac{1}{(v-8)} \times \frac{v+8}{4} = \frac{v+8}{4(v-8)}$ $\frac{v+8}{4v-32}$ Restrictions: $v \neq 8, -3, 10$	Ex. $1 \frac{v^2 - 7v - 30}{v^2 - 5v - 24} \times \frac{v + 8}{4v - 40}$	$\frac{c^2 - 6c - 27}{5c^2 + 16c + 3} \times \frac{2}{4c - 36}$	$\frac{a-4}{a^2-16} \times \frac{a^2+5a+4}{a+1}$
$= \frac{(v-10)(v+3)}{(v-8)(v+3)} \times \frac{v+8}{4(v-10)}$ $= \frac{1}{(v-8)} \times \frac{v+8}{4} = \frac{v+8}{4(v-8)}$ $\frac{v+8}{4v-32}$ Restrictions: $v \neq 8, -3, 10$	$=\frac{(v-10)(v+3)}{(v-8)(v+3)}\times\frac{v+8}{4(v-10)}$		
$=\frac{1}{(v-8)} \times \frac{v+8}{4} = \frac{v+8}{4(v-8)}$ $\frac{v+8}{4v-32}$ Restrictions: $v \neq 8, -3, 10$	$=\frac{(v-10)(v+3)}{(v-8)(v+3)}\times\frac{v+8}{4(v-10)}$		
$\frac{\nu + 8}{4\nu - 32}$ Restrictions: $\nu \neq 8, -3, 10$	$=\frac{1}{(v-8)}\times\frac{v+8}{4}=\frac{v+8}{4(v-8)}$		
Restrictions: $v \neq 8, -3, 10$	$\frac{\nu+8}{4\nu-32}$		
	<i>Restrictions</i> : $v \neq 8, -3, 10$		

Dividing

Step 1: Flip the second fraction to change the division sign to multiplication.

Step 2: Factor all numerators and denominators.

Step 3: Cancel out common factors of the numerators and denominators. Simplify.

Step 4: State any restrictions on the variable. <u>Include those that were originally in the denominator before you flipped</u> <u>the fraction</u>.

Ex. $1 \frac{b-5}{b^2-5b-6} \div \frac{b^2-25}{5b-30}$	$\frac{x^2-1}{x+3} \div \frac{4x^2+7x+3}{16x^2+12x}$	$\frac{a-3}{6a}\div\frac{a^2-9}{a^2+5a+6}$
$=\frac{b-5}{b^2-5b-6}\times\frac{5b-30}{b^2-25}$		
$=\frac{b-5}{(b+1)(b-6)}\times\frac{5(b-6)}{(b+5)(b-5)}$		
$=\frac{b-5}{(b+1)(b-6)}\times\frac{5(b-6)}{(b+5)(b-5)}$		
$=\frac{1}{(b+1)}\times\frac{5}{(b+5)}$		
$=\frac{5}{(b+1)(b+5)}=\frac{5}{(b^2+6b+5)}$		
$b \neq -1, -5, +5, 6$		

Adding		
Step 1: Factor all denominators.		
Step 2: Find a common denominator. I	Nultiply each term's numerator and den	ominator by the factors its
denominator is missing from the	e other denominators.	
Step 3: Simplify the numerators.		
Step 4: Add the numerators. Simplify a	ind create a single fraction.	
Ex. $1\frac{b-5}{b^2-5b-6}+\frac{1}{5b-30}$	$\frac{a-4}{a^2-1}+\frac{1}{a+1}$	$\frac{6a}{a+3} + \frac{3}{a^2+5a+6}$
$=\frac{b-5}{(b+1)(b-6)}+\frac{1}{5(b-6)}$		
$=\frac{5(b-5)}{5(b+1)(b-6)}+\frac{1(b+1)}{5(b+1)(b-6)}$		
$=\frac{5b-25}{5(b+1)(b-6)}+\frac{b+1}{5(b+1)(b-6)}$		
$=\frac{6b-24}{5(b+1)(b-6)}$		
$=\frac{6b-24}{5(b^2-5b-6)}$		
$=\frac{6b-24}{5b^2-25b-30}$		
Restrictions: $h \neq -1$ $h \neq 6$		
Subtracting	L	
Same process as addition but be carefu	I when you distribute the negative to the	e second fraction.
Ex. $1\frac{b-5}{b^2-5b-6}-\frac{1}{5b-30}$	$\frac{3}{x-2}-\frac{7x}{3x^2-5x-2}$	$\frac{3}{6a} - \frac{2a+1}{a^2+5a+6}$
$=\frac{b-5}{(b+1)(b-6)}-\frac{1}{5(b-6)}$		
$=\frac{5(b-5)}{5(b+1)(b-6)}-\frac{1(b+1)}{5(b+1)(b-6)}$		
$=\frac{5b-25}{5(b+1)(b-6)}-\frac{b+1}{5(b+1)(b-6)}$		
$=\frac{4b-26}{5(b+1)(b-6)}$		
$=\frac{4b-26}{5(b^2-5b-6)}$		
$=\frac{4b-26}{5b^2-25b-30}$		
Restrictions: $b \neq -1$, $b \neq 6$		

Solving				
Step 1: Factor all denominators.				
Step 2: Find a common denominator. I	Multiply each term's numerator and den	ominator by the factors its		
denominator is missing from the	e other denominators.			
Step 3: Cancel the denominators and se	olve the remaining equation.			
x 1 -3		2 1 -3		
Ex. $1\frac{1}{x+2} - \frac{1}{x^2-4} = \frac{1}{x-2}$	$\frac{1}{2}=\frac{1}{2}$	$\frac{1}{r+2} - \frac{1}{r+3} = \frac{1}{r^2+5r+6}$		
	a 4a 3			
x 1 -3				
$\frac{1}{x+2} - \frac{1}{(x+2)(x-2)} = \frac{1}{x-2}$				
x(x-2) 1 –	3(x+2)			
$\left \frac{1}{x+2(x-2)}-\frac{1}{(x+2)(x-2)}\right =\frac{1}{x-2}$	$\frac{1}{2(r+2)}$			
$\frac{x+u(x-u)}{(x+u)(x-u)} \xrightarrow{x-u}$				
r(r-2) - 13(r+2)				
x(x-2) - 1 = -3(x+2)				
$r^{2} - 2r - 13r - 6$				
$x^{2} - 2x - 1 = -3x - 0$				
$x^2 + x + 5 = 0$ Graph: NO REAL SC				
x + x + 5 = 0 Graph. NO REAL SC				
Mark Drahlama				
These types of problems involve situati		to de comething. Veu ere usually told		
how long each person takes to complete	ons such as two people working together	to do something. You are usually told		
them to complete the task working toge	ther The TRICK. Think of the problem in	asked now long it will take the two of terms of how much each person /		
machine / whatever does in a given uni	t of time.	rternis of new much cach person?		
Mr. Mealey can paint an entire	Step 2: Find out how much they can	Step 3: Multiply the ratio found in step		
house in twelve hours. Ms. Gerard	do together in the common amount of	2 by the variable t and set that equal		
can paint a house in eight hours.	time by adding the fractions created in	to the number of houses in question.		
How long would it take the two	step 1.	Solving for t gives you the amount of		
painters together to paint the	To path an the projections are project	time needed.		
nouse?		$\frac{5}{2t}t = 1$		
Step 1: How much can each person	$\frac{1}{12} + \frac{1}{8}$ of a house in one hour.	24^{-24}		
do in a common amount of time?		$\left(\frac{2}{5}\right)\frac{3}{24}t = 1\left(\frac{2}{5}\right)$		
	Simplify:	24		
Mr. Mealy can paint $\frac{1}{2}$ of a house in	$\left(\frac{1}{2}\times\frac{2}{5}\right) + \left(\frac{1}{2}\times\frac{3}{5}\right) = \frac{5}{5}$	$t = \frac{1}{5} = 4.8$		
one hour	$(3 \times 4 \ 2) \ (2x4 \ 3) \ 24$	-		
	So together they can point 5 of a	So it would take 4.8 hours for them to		
Ms. Gerard can paint $\frac{1}{2}$ of a house in	So together they can pairit $\frac{1}{24}$ of a	paint one house working together.		
one bour	nouse in one nour.	(However, now that Mr. Mealey has		
		compone to talk to it will proposily		
		someone to talk to it will probably take a lot longer ③)		
Phillin can mow a lawn in 2 hours	I make \$200 in the time you make	someone to talk to it will probably take a lot longer. ©) Working alone, it takes Asanii 8		
Phillip can mow a lawn in 2 hours.	I make \$200 in the time you make	someone to talk to it will probably take a lot longer. ©) Working alone, it takes Asanji 8 hours to dig a 10 ft by 10 ft bole		
Phillip can mow a lawn in 2 hours. Jada can mow 2 lawns in 3 hours. How long would it take them to	I make \$200 in the time you make \$260. If you make \$7 per hour more than me, how much money did we	Someone to talk to it will probably take a lot longer. (2) Working alone, it takes Asanji 8 hours to dig a 10 ft by 10 ft hole. Brenda can dig the same home in 9		
Phillip can mow a lawn in 2 hours. Jada can mow 2 lawns in 3 hours. How long would it take them to mow 10 lawns together?	I make \$200 in the time you make \$260. If you make \$7 per hour more than me, how much money did we each make per hour?	someone to talk to it will probably take a lot longer. (2) Working alone, it takes Asanji 8 hours to dig a 10 ft by 10 ft hole. Brenda can dig the same home in 9 hours. How long would it take them		
Phillip can mow a lawn in 2 hours. Jada can mow 2 lawns in 3 hours. How long would it take them to mow 10 lawns together?	I make \$200 in the time you make \$260. If you make \$7 per hour more than me, how much money did we each make per hour?	someone to talk to it will probably take a lot longer. (2) Working alone, it takes Asanji 8 hours to dig a 10 ft by 10 ft hole. Brenda can dig the same home in 9 hours. How long would it take them if they work together		
Phillip can mow a lawn in 2 hours. Jada can mow 2 lawns in 3 hours. How long would it take them to mow 10 lawns together?	I make \$200 in the time you make \$260. If you make \$7 per hour more than me, how much money did we each make per hour?	someone to talk to it will probably take a lot longer. (2) Working alone, it takes Asanji 8 hours to dig a 10 ft by 10 ft hole. Brenda can dig the same home in 9 hours. How long would it take them if they work together.		
Phillip can mow a lawn in 2 hours. Jada can mow 2 lawns in 3 hours. How long would it take them to mow 10 lawns together?	I make \$200 in the time you make \$260. If you make \$7 per hour more than me, how much money did we each make per hour?	someone to talk to it will probably take a lot longer. (2) Working alone, it takes Asanji 8 hours to dig a 10 ft by 10 ft hole. Brenda can dig the same home in 9 hours. How long would it take them if they work together.		
Phillip can mow a lawn in 2 hours. Jada can mow 2 lawns in 3 hours. How long would it take them to mow 10 lawns together?	I make \$200 in the time you make \$260. If you make \$7 per hour more than me, how much money did we each make per hour?	someone to talk to it will probably take a lot longer. (2) Working alone, it takes Asanji 8 hours to dig a 10 ft by 10 ft hole. Brenda can dig the same home in 9 hours. How long would it take them if they work together.		
Phillip can mow a lawn in 2 hours. Jada can mow 2 lawns in 3 hours. How long would it take them to mow 10 lawns together?	I make \$200 in the time you make \$260. If you make \$7 per hour more than me, how much money did we each make per hour?	someone to talk to it will probably take a lot longer. (2) Working alone, it takes Asanji 8 hours to dig a 10 ft by 10 ft hole. Brenda can dig the same home in 9 hours. How long would it take them if they work together.		
Phillip can mow a lawn in 2 hours. Jada can mow 2 lawns in 3 hours. How long would it take them to mow 10 lawns together?	I make \$200 in the time you make \$260. If you make \$7 per hour more than me, how much money did we each make per hour?	someone to talk to it will probably take a lot longer. (2) Working alone, it takes Asanji 8 hours to dig a 10 ft by 10 ft hole. Brenda can dig the same home in 9 hours. How long would it take them if they work together.		

Rationals

Graphing Rational Functions			
	EXAMPLE 1	EXAMPLE 2	EXAMPLE 3
STEPS	$f(x) = \frac{2x^2 - 6x + 4}{x^2 + x - 6}$	$f(x) = \frac{x^2 - 9}{(x+2)}$	$f(x) = \frac{x+3}{x^2 + 4x - 5}$
1. SIMPLIFY the function by factoring both numerator and denominator.	$\frac{2(x-1)(x-2)}{(x+3)(x-2)} = \frac{2(x+1)}{(x+3)}$	$\frac{(x+3)(x-3)}{(x+2)}$	
2. HOLES are identified by looking for factors that appear in both the numerator and denominator.	<i>x</i> = 2	None	None
3. VERTICAL ASYMPTOTES (VA) are found by looking at the denominator. Set the remaining factor(s) equal to zero and solve for x.	x = 3	x = -2	x = 1, x = 0
4. HORIZONTAL ASYMPTOTES (HA) are found by comparing the degree of the numerator and the denominator.	Equal $\frac{2}{1} = 2$	Top Heavy, no HA	Bottom Heavy, HA $y = 0$
<u>Top Heavy</u> – No HA <u>Equal</u> – divide the leading coefficient of the numerator by the leading coefficient of the denominator. <u>Bottom Heavy</u> – HA at the line $y = 0$	<i>y</i> = 2		
5. ZEROS (X INTERCEPTS) are determined by finding the x values that will cause the numerator to be zero. (If the numerator is equal to zero, the entire function will be zero.)	(x - 1) = 0(x - 2) = 0(1,0), (2,0)	(x + 3) = 0(x - 3) = 0(-3,0), (3,0)	(x + 3) = 0 (-3,0)
6. Y INTERCEPTS are found by evaluating the function at the value $x = 0$.	$f(0) = \frac{4}{-6} = -\frac{2}{3}$ $(0, -\frac{2}{3})$	$f(0) = \frac{-9}{2} = -\frac{9}{2}$ $(0, -\frac{9}{2})$	$f(0) = \frac{3}{-5} = -\frac{3}{5}$ $(0, -\frac{3}{5})$

7. SKETCH the graph.

Draw the vertical and horizontal asymptotes first.

Plot the X and Y intercepts.

Make a table of points. Be sure to include at least two points on each side of all vertical asymptotes. Use the table function on your calculator to find values. Connect the points and rough in your sketch.

Graphing Rational Functions			
	PROBLEM 1	PROBLEM 2	PROBLEM 3
STEPS	$f(x) = \frac{3x^2 - 12}{x^2 + 7x + 10}$	$f(x) = \frac{x^2 - 25}{(x+2)}$	$f(x) = \frac{x^2 + 7x + 10}{x^3 + 4x^2 - 5x}$
1. SIMPLIFY the function by factoring both numerator and denominator.			
2. HOLES are identified by looking for factors that appear in both the numerator and denominator.			
3. VERTICAL ASYMPTOTES (VA) are found by looking at the denominator. Set the remaining factor(s) equal to zero and solve for x.			
4. HORIZONTAL ASYMPTOTES (HA) are found by comparing the degree of the numerator and the denominator.			
<u>Top Heavy</u> – No HA <u>Equal</u> – divide the leading coefficient of the numerator by the leading coefficient of the denominator. <u>Bottom Heavy</u> – HA at the line $y = 0$			
5. ZEROS (X INTERCEPTS) are determined by finding the x values that will cause the numerator to be zero. (If the numerator is equal to zero, the entire function will be zero.)			
6. Y INTERCEPTS are found by evaluating the function at the value $x = 0$.			

7. SKETCH the graph.

Draw the vertical and horizontal asymptotes first. Plot the X and Y intercepts.

Make a table of points. Be sure to include at least two points on each side of all vertical asymptotes. Use the table function on your calculator to find values. Connect the points and rough in your sketch.