SIMPLIFYING RADICALS				
		1. \sqrt{29}	4	
EX: Simplify the expression $\sqrt{84x^4y^3}$		1. 7 2 9	4	
1.) Start by creating a factor tree for the constant. In this case 84.				
Keep factoring until all of your "nodes" are prime. Two factor trees				
are pictured below to show you that you will always end up with the				
same prime factors no matter how	ou begin your factoring.			
84	84	 √3€ 	$5x^4$	
2 42	$2 42 21 \cdot 4$			
6 7	7 3 2 2			
3 2		3.√16	$3.\sqrt{162x^3y}$	
2.) Identify any teams of 2. Each tea	am can be brought out from			
under the radical. When you repres	-			
only write the number once. All the				
the radical.				
$\sqrt{84} = 2\sqrt{7}$	$\overline{3} = 2\sqrt{21}$	1 /67	$75x^6y^3z^7$	
		4. \ 07	5x y 2	
3.) The variables work the same way	-			
from the radical. $\sqrt{x^4y^3}$ can be wri	•			
There are two teams of x and one te	eam of y. So $\sqrt{x^4y^3} = x^2y\sqrt{y}$			
4.) Bringing it all together our final a	inswer is $2x^2y\sqrt{21y}$			
COMPLEX NUMBERS			I	
The imaginary number <i>i</i> is not	EX: Simplify the expression		$1.\sqrt{-49}$	
actually imaginary. Remember	(-2+3i) + (5-2i)			
that $i = \sqrt{-1}$ and $i^2 = -1$	-2 + 3i + 5 - 2i = 3 + i		$2.\sqrt{-108}$	
•	-2 + 5i + 5 - 2i - 5 + i			
Imaginary numbers let you take the square root of a negative	EX: Simplify the expression			
number. For example $\sqrt{-16} = 4i$	(6-4i) - (4+5i)		3.(1+i) + (7-5i)	
and $\sqrt{-24} = 2i\sqrt{6}$.			$\begin{bmatrix} \mathbf{J}, (\mathbf{L} + i) + (I - \mathbf{J}i) \end{bmatrix}$	
$\left \begin{array}{c} \frac{1}{2} \\ \frac{1}{2$	6 - 4i - 4 - 5i = 2 - 9i			
Complex numbers are written in	FV. Simplify the every			
the form $a + bi$ where a is the	EX: Simplify the expression $(4 - 2i)(-5 + 4i)$		4.(1-6i) - (16+6i)	
real part and bi is the imaginary	(4-3i)(-5+4i)			
part.	Use FOIL or box method to multi	ply the		
	binomials then gather like terms			
When dealing with complex	simplify $5.(2-3i)(1+2i)$		5. $(2-3i)(1+2i)$	
numbers treat <i>i</i> like a variable	$-20 + 16i + 15i - 12i^2$			
when you combine like terms.	= -20 + 16i + 15i - 12i	· ·		
Don't forget to substitute -1 for	= -20 + 16i + 15i + 12i	2)	6.3i(7-6i)	
i^2 when it pops up in your	= -8 + 31i			
expression.				
,			1	

FACTORING A TRINOMIAL			
EX: Factor the expression $6x^2 - 11x - 7$		1. $x^2 - 13x + 42$	2
STEP 1 Factor out the GCF if possible			-
STEP 2 Multiply a and c			
6 -7 -4			
• .			
STEP 3 Find the two factors of $a \times c$ that	it add up to <i>b</i> .		
Factors of Sum	n of	2. $x^2 + 7x + 6$	
a imes c Fact	ors		
1 -42 -4	1		
2 -21 -1	9		
3 -14 -1	1		
6 -7 -1	1		
STEP 4 Construct two factors as follows	where f_1 and f_2	-	
are the two factors identified in step 3.		3. $10x^2 + 7x - 6$	
the two factors are unchanged.	-		
$(x + \frac{f_1}{a})(x + \frac{f_2}{a})$			
$\left(x + \frac{1}{a}\right)\left(x + \frac{1}{a}\right)$			
Then simplify the fractions if possible.			
For our example the factors are			
$(x+\frac{3}{6})(x-\frac{14}{6})$			
0 0			
Then simplified			and width of a rectangle with an area
$(x+\frac{1}{2})(x-\frac{7}{3})$		of $A = 3x^2 - x - 3$	10.
2 3			
STEP 5 Swing the denominator of any remaining fractions			
in front of the x . This leaves us with	-		
(2x+1)(3x-7)			
CALCULATOR HINT: If you can't think of	f all the factors,		
enter the expression $a \times c/x$ into y_1 . N	low check the		
table. You now have a list of the factors	s of $a \times c$. You're		
only interested in the table entries in w	hich x and y_1 are		
both integers.			
DIFFERENCE OF SQUARES			
A difference of squares is a quadratic	1. $9x^2 - 25$		$3.1 - 9y^2$
of the form $(a^2 - b^2)$. This special			
case quadratic will always factor as			
follows:			
$(a^2 - b^2) = (a + b)(a - b)$			
EX: Factor the expression $(x^2 - 36)$	2. $x^2 - 16y^2$		4. $36x^2 - 18$
Since both x^2 and 36 are perfect			
squares the factored form is			
$(x^2 - 36) = (x + 6)(x - 6)$			
EX: Factor the expression $(9x^2 - 1)$			
$(9x^2 - 1) = (3x + 1)(3x - 1)$			

SOLVE BY FACTORING		
Put the quadratic equation in	1. $a^2 + 5a + 6 = 0$	3. $2x^2 - x = 1$
standard form and find the factors.		
Set each factor equal to zero and		
solve.		
Ex. $x^2 - 11x + 19 = -5$	2. $k^2 - 10k + 22 = -2$	4. The product of two consecutive
+5 +5	$2. \ \kappa \ 10\kappa + 22 - 2$	negative integers is 1122. What are
$x^2 - 11x + 24 = 0$		the numbers?
$\begin{array}{c} x & -11x + 24 = 0 \\ (x - 8)(x - 3) = 0 \end{array}$		the numbers:
$\begin{array}{c} (x-3)(x-3) = 0 \\ x-8 = 0 \\ x-3 = 0 \end{array}$		
$\begin{array}{cccc} x - 8 = 0 & x - 3 = 0 \\ x = 8, & x = 3 \end{array}$		
SOLVE BY GRAPHING		
The graph of a quadratic equation	1. $a^2 - a - 6 = 0$	4. Mr. Walsh's free throw is modeled
crosses the x-axis at the real solutions		by the equation
for the equation. Use your calculator		$h(x) = -16x^2 + 20x + 6$
to find the exact values for the x-		$n(x) = -10x^2 + 20x + 6$
intercepts.		where $h(x)$ represents the height of the
	2. $x^2 + 4x - 1 = 0$	ball and x represents the time in seconds
1.) Make sure the equation is in		after the ball is shot. When does it land?
standard form $y = ax^2 + bx + c$		
2.) Enter the equation in y_1		
3.) Enter 0 in y_2		
4.) Press [2 nd] [TRACE] [5] – intersect	$3.2x^2 + 4x = 70$	
5.) Press [ENTER] [ENTER] move		
cursor near your guess and press		
[ENTER]		
6.) Repeat from step 4 for your		
second root.		
SOLVE BY QUADRATIC FORMULA		
Standard form first	1. $3x^2 - 8x = 11$	2. $2x^2 - x = 1$
$y = ax^2 + bx + c$		
Plug into formula		
$-b + \sqrt{b^2 - 4ac}$		
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
Simplify		
	3. A garden measuring 12 meters by	
Ex. $2x^2 + 3x - 4 = 0$	16 meters is to have a pedestrian	
	pathway installed all around it,	₂ ≮×
$2 + \sqrt{(2)^2 + 4(2)(-4)}$	increasing the total area to 285	11
$x = \frac{-3 \pm \sqrt{(3)^2 - 4(2)(-4)}}{2(2)}$	square meters. What will be the	↓ <u>↓</u>
2(2)	width of the pathway?	×
	which of the pathway:	
$x = \frac{-3 \pm \sqrt{27}}{4}$	4. $4k^2 + 25k - 21 = 0$]
$x - \frac{4}{4}$	+. $+.$ $+.$ $+.$ $$ $+.$ $$ $$ $$	
_		
$x = \frac{-3 \pm 3\sqrt{3}}{4}$		
x =		

COMPLEX ROOTS		
When the determinant (numbers under the radical) is negative, the solutions will be complex numbers. Ex. $4x^2 - 2x + 3 = 0$	1. $k^2 + 2k + 5 = 0$	2. $2k^2 - 5k + 7 = 0$
$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(4)(3)}}{2(4)}$ $x = \frac{2 \pm \sqrt{-44}}{8}$	3. $k^2 - 3x + 5 = 0$	4. $2k^2 + 7x - 4 = 0$
$x = \frac{2 \pm 2i\sqrt{11}}{8}$		
$x = \frac{1 \pm i\sqrt{11}}{4}$		
SOLVING RADICAL EQUATIONS AN	D EXTRANEOUS SOLUTIONS	<u> </u>
Radical equations have a variable under the radical sign. To solve, isolate the radical term, square both sides to eliminate the radical and solve using a method. Check for extraneous solution by plugging in your answers to the <u>original</u> equation. If it doesn't work, it extraneous. Ex. $\sqrt{x-1} = x-7$ $(\sqrt{x-1})^2 = (x-7)^2$ x-1 = (x-7)(x-7) $x-1 = x^2 - 14x + 49$ $0 = x^2 - 15x + 50$ 0 = (x-5)(x-10) x = 5, x = 10 Now test each solution in the original equation. $\sqrt{5-1} = 5-7$ $\sqrt{4} = -2$ 2 = -2 FALSE! Extraneous $\sqrt{10-1} = 10-7$ $\sqrt{9} = 3$	r $1.\sqrt{x-2}-5=0$ ny ns	3. $b - 6 = \sqrt{18 - 3b}$

WRITING EQUATIONS FROM ROOT	rs.	
Working backwards from the roots, create the equation of the quadratic function.	1. $x = 2$ $x = -4$	3. $x = \frac{1}{4}$ $x = -\frac{4}{3}$
Start with the equations of the roots. If the root is a fraction, multiply both sides by the denominator.		
Then add/subtract to get everything to the left side. Create factors from the left side and multiply together.		
Ex. Find the equation for a parabola		
with the roots $x = -3$, $x = \frac{2}{3}$	2. $x = -1$ $x = \frac{3}{5}$	4. A person dives off of a board into the water. She goes under 2 seconds
$ x = -3 x = \frac{2}{3} x + 3 = 0 3x = 2 3x - 2 = 0 $		after diving and resurfaces 4.5 seconds after diving. Write an equation to represent the time that she was underwater (no decimals).
(x+3)(3x-2)3x2 + 9x - 2x - 63x2 + 7x - 6		
$y = 3x^2 + 7x - 6$		
QUADRATICS OF BEST FIT		
Use data and the graphing calculator to create a quadratic equation that will model real world situations.	1. Use the table below to create a quadratic model. The answer the questions below.	2. A ball is thrown in the air. The table below represents the height of the ball after a number of seconds. Create a quadratic model from the
x-value 1 2 3		data and answer the questions below.
y-value 1 4 8		
First enter your data [STAT] [EDIT] type x-values in L1	x -1 0 1 2 4 y 6 1 -2 2 21	time 0 1 3 4 height 0 13 100 200
type y values in L2	What is the predicted value of	What is the predicted height after 12
Next create regression equation [STAT][CALC][5:QuadReg] [VARS] [Y- VARS] [1:Function][Y1][ENTER]	x when $y = 3$?	seconds?
To find an x-value, Type the given y-value into $y_2 =$ Press [2 nd] [TRACE] [5] – intersect Press [ENTER] [ENTER] [ENTER]	What will y equal when $x = -2$?	At what time(s) would the object be 490 feet high?
To find a y-value Press [2 nd][TRACE][VALUE] Type given x-value Press [ENTER]		

CONVERTING FROM STANDARD FORM TO VERTEX FORM		
Standard Form: $ax^2 + bx + c = 0$	Convert the following equations from standard form	
Vertex Form: $a(x-h)^2 + k = 0$, vertex is (h, k)	to vertex form. Use both methods.	
Method 1 – Use your calculator	1. $y = x^2 - 8x + 15$	
EX: Put the equation $y = 2x^2 - 12x + 19$ vertex form.		
Put the standard form equation into y_1 . Plot1 Plot2 Plot3 Y1 = 2X ² - 12X+19 If <i>a</i> is negative the graph points down so you will find a max .		
If <i>a</i> is positive the graph points up so you will find a min .	$2. y = -2x^2 + 12x - 21$	
Use [2 nd][TRACE][min/max]. Set a left bound and right bound. Press [ENTER]. The x/y values displayed are the coordinates of the vertex.		
(Λ)		
	$3. y = x^2 + 8x + 18$	
Minimum X=2.999999 Y=1		
Note some calculators don't round up. If you see a value with a decimal portion of repeating 9's, round up to the next integer. In this case use (3,1) as the vertex		
The value of a in the standard and vertex form and the same. Use the opposite of the x value for h and the y value for k.	Convert the following equations from vertex form to standard form.	
Vertex form: $y = 2(x - 3)^2 + 1$	$1.2(x-1)^2 - 3 = y$	
Method 2 – Use the formula		
EX: Put the equation $y = 2x^2 - 12x + 19$ vertex form.		
The vertex of any quadratic (h, k) , h can be found by the		
formula $h = \frac{-b}{2a}$. To find k plug in the h you calculate back in		
to the original equation.	2. $-(x+4)^2 + 1 = y$	
$h = \frac{-(-12)}{2(2)} = \frac{12}{4} = 3$ $k = 2(3^2) - 12(3) + 19 = 1$		
n = 2(3) + 12(3) + 17 = 1		
Using a from the original equation we get		
$y = 2(x-3)^2 + 1$		
Convert from Vertex Form to Standard Form Use order of operations for expand the squared term, multiply the resulting terms by <i>a</i> and then add <i>k</i> .		
EX: Convert $y = 2(x - 3)^2 + 1$ to standard form.		
$y = 2[x^2 - 6x + 9] + 1$		
$=2x^2 - 12x + 18 + 1$		
$=2x^2 - 12x + 19$		