TRINOMIAL FACTORING

How? $ax^2 + bx + c$

- -Use x-factor to find two numbers that multiply to ac and add to b.
- -Replace bx with the two answers from your x-factor (multiplied by x).
- -Take the GCF of the first two terms and the GCF of the second two terms.
- -Write your answer: (what's in parenthesis)(what's not)

 $#1 x^2 - 13x + 42$

$$(x-6)(x-7)$$

 $+3 \quad 10x^2 + 7x - 6$ a.c= -60 swing method 12(-5) =-60

$$(x + \frac{12}{10})(x - \frac{5}{10})$$
 $12 - 5 = 7$
 $(x + \frac{6}{5})(x - \frac{12}{2})$

 $Ex.5x^2+19x+12$

5x(x+3)+4(x+3)(5x+4)(x+3)

 $42 9x^2 - 25$

différence of squores V9X2 = 3X V25 = 5 (3X-5)(3X+5)

#4 Find the length and width of a rectangle with an area of A = L.W $A = 3x^2 - x - 10.$

(x-6)(x+5) (x-2)(3x+5) -6.5=-30 -6.5=-1

(x-3)(x+12)=0 a|C=-1

SOLVE BY FACTORING

How? $y = ax^2 + bx + c$

Ex. $x^2 - 11x + 19 = -5$

- -Get all terms on the same side.
- -Factor.
- -Set each factor equal to zero and

+5 +5

 $x^2 - 11x + 24 = 0$

(x-8)(x-3) = 0

x - 8 = 0 x - 3 = 0

+8 + 8 + 3 + 3

x = 8x = 3

 $#1 a^2 + 5a + 6 = 0$

#2
$$k^2 - 10k + 22 = -2$$

#4 The product of two consecutive negative integers is 1122. What are

(x-1)(2x+1)=0 x=1

 $2x^2-x-1=0$

#3 $2x^2 - x = 1$

the numbers?
$$-n(n+1) = 1122$$
 $n^2 - n = 1122$
 $n^2 - n = 1122$
 $(n-34)(n+33) = 0$

SOLVE BY GRAPHING

How? $y = ax^2 + bx + c$

- -Get the quadratic in standard form.
- -Graph the equation in y1 on your calculator.
- -Graph y2 = 0
- -Press second ->trace -> intersect
- Enter -> Enter -> go to your guess ->
- enter
- -Repeat for your second root.

#1 $a^2 - a - 6 = 0$

#4 Mr. Walsh's free throw is modeled by the equation $h(x) = -16x^2 + 20x +$ 6, where h(x) represents the height of the ball and x represents the time in seconds after the ball is shot. When does it land?

ofter 1.5 seconds

SOLVE BY QUADRATIC FORMULA

How? $y = ax^2 + bx + c$ -Get in standard form.

-Plug into quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

-Simplify

Ex.
$$2x^2 + 3x - 4 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-3 \pm \sqrt{(3)^2 - 4(2)(-4)}}{2(2)}$$
$$x = \frac{-3 \pm \sqrt{9 + 18}}{4}$$
$$x = \frac{-3 \pm \sqrt{27}}{4}$$

$$x = \frac{-3 \pm 3\sqrt{3}}{4}$$

#1
$$3x^2 - 8x = 11$$
, $3x^2 - 8x - 11 = 0$
 $8 \pm \sqrt{(-8)^2 - 4(5)(-11)} = X$

$$\frac{8\pm 14}{6} = \chi$$
 $\chi = \frac{1}{3}$
#3 $4k^2 + 25k - 21 = 0$

$$#3 \quad 4k^2 + 25k - 21 = 0$$

#2
$$2x^2 - x = 1$$
, $2x^2 - x - 1 = 0$

$$\frac{1 \pm \sqrt{(1)^2 - 4(2)(1)}}{2(2)} = \chi$$

$$\frac{1 \pm 3}{4} = \chi$$

$$\chi = -\frac{1}{2}$$

#4 A garden measuring 12 meters by 16 meters is to have a pedestrian pathway installed all around it, increasing the total area to 285 square meters. What will be the

X=12 -124

1.5 meters

COMPLEX ROOTS

Complex Numbers

Format: a + bi where a is the real part and bi is the imaginary part.

$$i = \sqrt{-1}$$
$$i^2 = -1$$

#1
$$k^2 + 2k + 5 = 0$$

 $-2 \pm \sqrt{4 - 4(1)(5)} = X$
 $-2 \pm \sqrt{-16} = -2 \pm 4i = \frac{2}{2}$

#2
$$2k^2 - 5k + 7 = 0$$

 $5 \pm \sqrt{35 - 4(2)}$
 $3(2)$
 $5 \pm \sqrt{-31} = 5 \pm \sqrt{31}$
 4

Ex.
$$4x^2 - 2x + 3 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(4)(3)}}{2(4)}$$
$$x = \frac{2 \pm \sqrt{4 - 48}}{8} x = \frac{2 \pm \sqrt{-44}}{8}$$

$$x = \frac{2 \pm 2i\sqrt{11}}{8}$$
$$x = \frac{1 \pm i\sqrt{11}}{4}$$

$$\frac{-3 + \sqrt{-16}}{2} = \frac{-2 + \sqrt{4}}{2}$$

$$\frac{-1 + 2 + \sqrt{2}}{2}$$

$$+3 \quad k^2 - 3x + 5 = 0$$

$$#4 \quad 2k^2 + 7x - 4 = 0$$

COMPLETE THE SQUARE TO FIND VERTEX FORM

How? $y = ax^2 + bx + c$

- -Get in $y c = ax^2 + bx$ form.
- -Divide each term by a.
- -add $\left(\frac{b}{2}\right)^2$ to both sides
- -factor the right to $\left(x + \frac{b}{2}\right)^2$
- -solve for y

Ex.
$$y = 2x^2 - 4x + 4$$

 $-4 - 4$
 $y - 4 = 2x^2 - 4x$
 $\div 2 \div 2 \div 2$
 $\frac{y}{2} - 2 = x^2 - 2x$
 $+1 + 1$
 $\frac{y}{2} - 1 = x^2 - 2x + 1$

$$\frac{y}{2} - 1 = (x - 1)^{2} + 1 + 1$$

$$\frac{y}{2} = (x - 1)^{2} + 1$$

$$\cdot 2 \cdot 2 \cdot 2$$

$$y = 2(x - 1)^2 + 2$$

#1 $y = x^2 - 4x + 6$

$$Y - (x = x)^{3} - 4x$$

 $Y - (x + 4 = x)^{2} - 4x + 4$
 $Y - 2 = (x - 2)^{2}$
 $Y = (x - 2)^{2} + 2$
 $y = 2k^{2} + 10k + 8$

$$#2 \quad y = 2k^2 + 10k + 8$$

#3 $2x^2 - 5x + y = 3$ Y-3 = -2x 4 5x 1-3-50=-2(x2-5x-35) 1-3-50=-2(x2-5x-35) 1-98 =-3(x-24) 1-368

Suppose there is an arch that follows the equation

$$F(x) = -\frac{1}{70} x^2 + 6x.$$

How far apart are the ends of the arch?

SOLVING RADICAL EQUATIONS THAT HAVE EXTRANEOUS SOLUTIONS

How? $\sqrt[a]{(x+b)^c} = x+d$

-Get rid of the radicals by raising to the reciprocal power (don't forget to distribute if squaring (x+d))

-solve for x by any method -check for extraneous solutions by plugging in your answers to the original equation (if it doesn't work, its extraneous)

$$#1\sqrt{x-2}=5$$

#2
$$\sqrt{c-5} = c+1$$

$$C-5 = C^2 + 2c+1$$

$$O = C^2 + C + 6$$
imaginary solution

$$Ex.\sqrt{x-1} = x - 7$$
$$\sqrt{x-1}^{2} = (x-7)^{2}$$

$$x - 1 = (x - 7)(x - 7)$$

$$0 = x^2 - 15x + 50$$

$$0 = (x - 5)(x - 10)$$
$$x = 5, x = 10$$

Now test each solution in the original equation.

$$\sqrt{5-1} = 5-7$$

$$\sqrt{4} = -2$$

$$2 = -2$$

FALSE! Extraneous

$$\sqrt{10-1} = 10-7$$

$$\sqrt{9} = 3$$

$$3 = 3 \ true$$

#3
$$b - 6 = \sqrt{18 - 3b}$$

WRITING EQUATIONS FROM ZEROES

How?	x = -3	$x = \frac{2}{3}$
	,,	13

-multiply then add or subtract to move everything to the left side. -multiply the left sides together

(x-z)(x+4)	50
(x-z)(x+4) x2+4x-8	50

#1 x = 2 x = -4

#3 $x = \frac{1}{4} x = -\frac{4}{4}$ (x - 4)(x + 4)(4x-1)(3x+4) = 0

Ex.
$$x = -3$$
 $x = \frac{2}{3}$ + 3 $x + 3 = 0$ $3x = 2$ $x + 3 = 0$ $3x - 2 = 0$

$$(x+3)(3x-2)3x^2 + 9x - 2x - 63x^2 + 7x - 6$$

 $y = 3x^2 + 7x - 6$

$$(x+3)(3x-2)$$

$$3x^2 + 9x - 2x - 6$$

$$3x^2 + 7x - 6$$

#2
$$x = -1$$
 $x = \frac{3}{5}x = 1$
 $(X+I)(X-35)(X-I) = 0$
 $(X-I)^{2}(5x-3) = 0$

#4 A person dives off of a board into the water. She goes under 2 seconds after diving and resurfaces 4.5 seconds after diving. Write an equation to represent the time that she was underwater (no decimals).

$$X=2$$
, $X=42=9/2$
 $(X-2)<0$ $(X-9)<0$
 $(X-2)(2X-9)<0$
 $3X^{2}-13X+18<0$

QUADRATICS OF BEST FIT

How?			
x-value	а	b	С
y-value	d	е	f

- -stat -> edit -> type x-values in L1 and y-values in L2.
- -stat->calc->quadreg->vars-> y-vars-> function-> y1 -> enter
- -To find an x-value, type the given yvalue into y2= and 2nd ->trace -> intersect ->enter ->enter->enter
- -to find a y-value, 2nd -> trace -> value
- -> type given x-value -> enter

#1					
X	-1	0	1	2	4
V	6	1	-2	2	21

What is x when y=3?

What is y when x=-2?

#3	y=1	4.5	X	7.3 x	+2.
tim	e	0	1	3	4
height		0	13	100	200

What is the height after 12 seconds?

1979

At what time(s) would the object be 490 feet high?

FOCUS AND DIRECTRIX

How?
$$(y - k) = \frac{1}{4p}(x - h)^2$$

- -remember (h,k) is the vertex. P is the distance from the vertex to the focus. -plug in your information or gather your information from this equation.
- #1 Find the focus, directrix, and vertex of

Find the focus, directrix, and vertex of

$$y = 3(x+2)^{2} - 5 \qquad f = 12$$

$$V = (-2, -6)$$

$$F = (-2, -4)$$

$$D \qquad y = 5/12$$

Ex. Write an equation for a parabola with a directrix of y = -3 and a focus of (5,7)

Vertex at (5,2) and
$$p = 7 - 2 = 5$$

 $(y - k) = \frac{1}{4p}(x - h)^2$

$$(y-2) = \frac{1}{4(5)}(x-5)^2$$

$$(y-2) = \frac{1}{20}(x-5)^2$$

#2 Write an equation for a parabola with a directrix of y = 2 and a focus of (3,0)

$$V:(3,1)$$
 $P=1$
 $1=\frac{1}{4}(x-3)^{2}+1=\frac{1}{4}$

#4 Find the focus of a quadratic with a vertex of (3,-5) and a directrix of v = -9