TRINOMIAL FACTORING		
How? $a x^{2}+b x+c$ -Use x-factor to find two numbers that multiply to ac and add to b. -Replace $b x$ with the two answers from your x -factor (multiplied by x). -Take the GCF of the first two terms and the GCF of the second two terms. -Write your answer: (what's in parenthesis)(what's not)	\#1 $x^{2}-13 x+42$	\#3 10x ${ }^{2}+7 x-6$
$\text { Ex.5 } 5 x^{2}+19 x+12$	\#2 9x ${ }^{2}-25$	\#4 Find the length and width of a rectangle with an area of $A=3 x^{2}-x-10$

SOLVE BY FACTORING

How? $y=a x^{2}+b x+c$ -Get all terms on the same side. -Factor. -Set each factor equal to zero and solve.	$\# 1 a^{2}+5 a+6=0$	\#3 $2 x^{2}-x=1$
Ex. $\begin{gathered} x^{2}-11 x+19=-5 \\ +5 \quad+5 \\ x^{2}-11 x+24=0 \\ (x-8)(x-3)=0 \\ x-8=0 \quad x-3=0 \\ +8+8+3+3 \\ x=8 x=3 \end{gathered}$	\#2 $k^{2}-10 k+22=-2$	\#4 The product of two consecutive negative integers is 1122 . What are the numbers?

SOLVE BY GRAPHING

```
How? y=a\mp@subsup{x}{}{2}+bx+c
-Get the quadratic in standard form.
-Graph the equation in y1 on your
calculator.
-Graph y2 = 0
-Press second ->trace -> intersect
- Enter -> Enter -> go to your guess ->
enter
-Repeat for your second root.
```

\#1 $a^{2}-a-6=0$
\#4 Mr. Walsh's free throw is modeled by the equationh $(x)=-16 x^{2}+20 x+$ 6 , where $h(x)$ represents the height of the ball and x represents the time in seconds after the ball is shot. When does it land?

SOLVE BY QUADRATIC FORMULA		
How? $y=a x^{2}+b x+c$ -Get in standard form. -Plug into quadratic formula -Simplify $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	\#1 $3 x^{2}-8 x=11$	\#2 $2 x^{2}-x=1$
Ex. $2 x^{2}+3 x-4=0$ $\begin{gathered} x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ x=\frac{-3 \pm \sqrt{(3)^{2}-4(2)(-4)}}{2(2)} \\ x=\frac{-3 \pm \sqrt{9+18}}{4} \\ x=\frac{-3 \pm \sqrt{27}}{4} \\ x=\frac{-3 \pm 3 \sqrt{3}}{4} \end{gathered}$	\#3 $4 k^{2}+25 k-21=0$	\#4 A garden measuring 12 meters by 16 meters is to have a pedestrian pathway installed all around it, increasing the total area to 285 square meters. What will be the width of the pathway?
COMPLEX ROOTS		
Complex Numbers Format: $a+b i$ where a is the real part and $b i$ is the imaginary part. $\begin{aligned} & i=\sqrt{-1} \\ & i^{2}=-1 \end{aligned}$	$\# 1 \quad k^{2}+2 k+5=0$	\#2 $2 k^{2}-5 k+7=0$
Ex. $4 x^{2}-2 x+3=0$ $\begin{gathered} x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(4)(3)}}{2(4)} \\ x=\frac{2 \pm \sqrt{4-48}}{8} x=\frac{2 \pm \sqrt{-44}}{8} \\ x=\frac{2 \pm 2 i \sqrt{11}}{8} \\ x=\frac{1 \pm i \sqrt{11}}{4} \end{gathered}$	\#3 $k^{2}-3 x+5=0$	\#4 $2 k^{2}+7 x-4=0$

COMPLETE THE SQUARE TO FIND VERTEX FORM

How? $y=a x^{2}+b x+c$
-Get iny $y=a x^{2}+b x$ for
-Divide each term by a.
-add $\left(\frac{b}{2}\right)^{2}$ to both sides
-factor the right to $\left(x+\frac{b}{2}\right)^{2}$
-solve for y
Ex. $y=2 x^{2}-4 x+4$
\#2 $\quad y=2 k^{2}+10 k+8$

$$
\frac{y}{2}-1=x^{2}-2 x+1
$$

$$
\frac{y}{2}-1=(x-1)^{2}
$$

$$
+1 \quad+1
$$

$$
\frac{y}{2}=(x-1)^{2}+1
$$

$$
\begin{array}{lll}
-2 & \cdot 2 & \cdot 2
\end{array}
$$

$$
y=2(x-1)^{2}+2
$$

SOLVING RADICAL EQUATIONS THAT HAVE EXTRANEOUS SOLUTIONS

How? $\sqrt[a]{(x+b)^{c}}=x+d$
-Get rid of the radicals by raising to the reciprocal power (don't forget to distribute if squaring ($\mathrm{x}+\mathrm{d}$)) -solve for x by any method -check for extraneous solutions by plugging in your answers to the original equation (if it doesn't work, its extraneous)
$\# 1 \sqrt{x-2}=5$
$\# 2 \quad \sqrt{c-5}=c+1$

Now test each solution in the original $\begin{array}{ll}\# 3 & b-6=\sqrt{18-3 b}\end{array}$

$$
\sqrt{x-1}^{2}=(x-7)^{2}
$$

$$
x-1=(x-7)(x-7)
$$

$$
x-1=x^{2}-14 x+49
$$

$$
-x+1 \quad-x+1
$$

$$
0=x^{2}-15 x+50
$$

$$
0=(x-5)(x-10)
$$

$$
x=5, x=10
$$

equation.

$$
\begin{gathered}
\sqrt{5-1}=5-7 \\
\sqrt{4}=-2 \\
2=-2 \\
\text { FALSE! Extraneous }
\end{gathered}
$$

$$
\begin{aligned}
\sqrt{10-1} & =10-7 \\
\sqrt{9} & =3
\end{aligned}
$$

$$
3=3 \text { true }
$$

Suppose there is an arch that follows the equation

$$
F(x)=-\frac{1}{70} x^{2}+6 x .
$$

How far apart are the ends of the arch?
\#3 $\quad 2 x^{2}-5 x+y=3$

Ex. $\sqrt{x-1}=x-7$	Now test each solution in the original equation.	$\# 3 \quad b-6=\sqrt{18-3 b}$
$\sqrt{x-1}^{2}=(x-7)^{2}$	$\sqrt{5-1}=5-7$	
$x-1=(x-7)(x-7)$	$\sqrt{4}=-2$	
$x-1=x^{2}-14 x+49$	$2=-2$	
$-x+1$	$-x+1$	FALSE! Extraneous
$0=x^{2}-15 x+50$	$\sqrt{10-1}=10-7$	
$0=(x-5)(x-10)$	$3=3$ true	
$x=5, x=10$		

WRITING EQUATIONS FROM ZEROES

How? $x=-3 \quad x=2 / 3$ -multiply then add or subtract to move everything to the left side. -multiply the left sides together				\#1 $x=2 \quad x=-4$						\#3 $\quad x=\frac{1}{4} \quad x=-\frac{4}{3}$				
$\begin{aligned} & \text { Ex. } x=-3 \quad x=2 / 3 \\ & 3 \quad 3 \cdot 3 \\ & x+3=0 \quad 3 x=2 \\ & -2 \quad-2 \\ & x+3=0 \quad 3 x-2=0 \\ & (x+3)(3 x-2) \\ & 3 x^{2}+9 x-2 x-6 \\ & 3 x^{2}+7 x-6 \\ & y=3 x^{2}+7 x-6 \\ & \hline \end{aligned}$				\#2 $\quad x=-1 x=3 / 5 x=1$						\#4 A person dives off of a board into the water. She goes under 2 seconds after diving and resurfaces 4.5 seconds after diving. Write an equation to represent the time that she was underwater (no decimals).				
QUADRATICS OF BEST FIT														
How?				\#1						\#3				
x -value	a	b	c	x	-1	0	1	2	4	time	0	1	3	4
y-value	d	e	f	y	6	1	-2	2	21	height	0	13	100	200
-stat -> edit -> type x-values in L1 and y-values in L . -stat->calc->quadreg->vars-> y-vars-> function-> y1 -> enter -To find an x-value, type the given y value into $\mathrm{y} 2=$ and $2^{\text {nd }}$->trace -> intersect ->enter ->enter->enter -to find a y-value, $2^{\text {nd }}->$ trace -> value -> type given x-value -> enter				What is y when $\mathrm{x}=-2$?						What is the height after 12 seconds? At what time(s) would the object be 490 feet high?				

FOCUS AND DIRECTRIX

How? $(y-k)=\frac{1}{4 p}(x-h)^{2}$
-remember (h, k) is the vertex. P is the distance from the vertex to the focus.
-plug in your information or gather your information from this equation.

Ex. Write an equation for a parabola with a directrix of $y=-3$ and a
focus of $(5,7)$
Vertex at $(5,2)$ and $p=7-2=5$

$$
\begin{aligned}
& (y-k)=\frac{1}{4 p}(x-h)^{2} \\
& (y-2)=\frac{1}{4(5)}(x-5)^{2} \\
& (y-2)=\frac{1}{20}(x-5)^{2}
\end{aligned}
$$

\#1 Find the focus, directrix, and vertex of

$$
(y-2)=\frac{1}{8}(x+3)^{2}
$$

\#2 Write an equation for a parabola with a directrix of $y=2$ and a focus of $(3,0)$
\#3 Find the focus, directrix, and vertex of

$$
y=3(x+2)^{2}-5
$$

\#4 Find the focus of a quadratic with a vertex of ($3,-5$) and a directrix of $y=-9$

