TRINOMIAL FACTORING		
How? $ax^2 + bx + c$	#1 $x^2 - 13x + 42$	#3 $10x^2 + 7x - 6$
-Use x-factor to find two numbers		
that multiply to ac and add to b.		
-Replace bx with the two answers		
from your x-factor (multiplied by x).		
-Take the GCF of the first two terms		
and the GCF of the second two terms.		
-Write your answer:		
(what's in parenthesis)(what's not)		
Ex.5x ² +19x+12	#2 $9x^2 - 25$	#4 Find the length and width of a
60		rectangle with an area of
15 🔨 4		$A=3x^2-x-10.$
19		
5x ² +15x+4x+12		
5x(x+3)+4(x+3)		
(5x+4)(x+3)		

SOLVE BY FACTORING		
How? $y = ax^2 + bx + c$	#1 $a^2 + 5a + 6 = 0$	#3 $2x^2 - x = 1$
-Get all terms on the same side.		
-Factor.		
-Set each factor equal to zero and		
solve.		
Ex. $x^2 - 11x + 19 = -5$	#2 $k^2 - 10k + 22 = -2$	#4 The product of two consecutive
+5 +5		negative integers is 1122. What are
$x^2 - 11x + 24 = 0$		the numbers?
(x-8)(x-3) = 0		
$x - 8 = 0 \qquad x - 3 = 0$		
+8 + 8 + 3 + 3		
x = 8x = 3		

SOLVE BY GRAPHING		
How? $y = ax^2 + bx + c$ -Get the quadratic in standard form. -Graph the equation in y1 on your calculator. -Graph y2 = 0 -Press second ->trace -> intersect - Enter -> Enter -> go to your guess -> enter -Repeat for your second root.	#1 $a^2 - a - 6 = 0$	#4 Mr. Walsh's free throw is modeled by the equation $h(x) = -16x^2 + 20x + 6$, where $h(x)$ represents the height of the ball and x represents the time in seconds after the ball is shot. When does it land?

SOLVE BY QUADRATIC FORMULA		
How? $y = ax^2 + bx + c$	#1 $3x^2 - 8x = 11$	#2 $2x^2 - x = 1$
-Get in standard form.		
-Plug into quadratic formula		
$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{b^2 - 4ac}$		
$\frac{\lambda}{2a}$		
-Simplify $5x + 2x + 4 = 0$	$+2$ $4k^{2} + 2k^{2} + 2k^{2} = 0$	H4 A condens as a consistent 12 meters
Ex. $2x^{2} + 3x - 4 = 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $x = \frac{-3 \pm \sqrt{(3)^{2} - 4(2)(-4)}}{2(2)}$ $x = \frac{-3 \pm \sqrt{9 + 18}}{4}$ $x = \frac{-3 \pm \sqrt{27}}{4}$ $x = \frac{-3 \pm 3\sqrt{3}}{4}$	$#3 4k^2 + 25k - 21 = 0$	#4 A garden measuring 12 meters by 16 meters is to have a pedestrian pathway installed all around it, increasing the total area to 285 square meters. What will be the width of the pathway? x
COMPLEX ROOTS	1	
	$\#1 k^2 + 2k + 5 = 0$	#2 $2k^2 - 5k + 7 = 0$
Complex Numbers Format: $a + bi$ where a is the real part and bi is the imaginary part. $i = \sqrt{-1}$ $i^2 = -1$		
Ex. $4x^2 - 2x + 3 = 0$	#3 $k^2 - 3x + 5 = 0$	$#4 2k^2 + 7x - 4 = 0$
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(4)(3)}}{2(4)}$ $x = \frac{2 \pm \sqrt{4 - 48}}{8}x = \frac{2 \pm \sqrt{-44}}{8}$		
$x = \frac{2 \pm 2i\sqrt{11}}{8}$ $x = \frac{1 \pm i\sqrt{11}}{4}$		

COMPLETE THE SQUARE TO FIND VERTEX FORM		
How? $y = ax^2 + bx + c$	#1 $y = x^2 - 4x + 6$	$#3 2x^2 - 5x + y = 3$
-Get in $y - c = ax^2 + bx$ form.		
-Divide each term by a.		
-add $\left(\frac{b}{2}\right)^2$ to both sides		
-factor the right to $\left(x+\frac{b}{2}\right)^2$		
-solve for y		
Ex. $y = 2x^2 - 4x + 4$ -4 - 4	#2 $y = 2k^2 + 10k + 8$	Suppose there is an arch that follows the equation
$y - 4 = 2x^2 - 4x$		$F(x) = -\frac{1}{70}x^2 + 6x.$
$\frac{1}{\sqrt{2}} \frac{y}{-2} = x^2 - 2x$		How far apart are the ends of the
2 +1 +1		arch?
$\frac{y}{2} - 1 = x^2 - 2x + 1$		
$\frac{y}{x} - 1 = (x - 1)^2$		
2 + 1 + 1		
$\frac{y}{2} = (x-1)^2 + 1$		
$\overline{\cdot 2} \cdot 2 \cdot 2$		
$y = 2(x-1)^2 + 2$		
SOLVING RADICAL EQUATIONS TH	AT HAVE EXTRANEOUS SOLUTIONS	
How? $\sqrt[a]{(x+b)^c} = x + d$	$\#1\sqrt{x-2} = 5$	#2 $\sqrt{c-5} = c+1$
-Get rid of the radicals by raising to		
the reciprocal power (don't forget to		
distribute if squaring (x+d))		
-solve for x by any method		
-check for extraneous solutions by		
plugging in your answers to the		
original equation (if it doesn't work,		
its extraneous)		
$Ex.\sqrt{x-1} = x-7$	Now test each solution in the original	#3 $b - 6 = \sqrt{18 - 3b}$
$\sqrt{x-1}^2 = (x-7)^2$	equation.	
x - 1 = (x - 7)(x - 7)	$\sqrt{5-1} = 5-7$	
2	$\sqrt{4} = -2$	
$x - 1 = x^2 - 14x + 49$	Z = -Z	
-x + 1 - x + 1	FALSE! EXTRANEOUS	
$0 = x^2 - 15x + 50$	$\sqrt{10-1} = 10-7$ $\sqrt{9} = 3$	
0 = (x - 5)(x - 10) x = 5, x = 10	3 = 3 true	

WRITING EQUATIONS FROM ZEROES			
How? $x = -3$ $x = \frac{2}{3}$	#1 $x = 2$ $x = -4$	$#3 x = \frac{1}{4} x = -\frac{4}{4}$	
-multiply then add or subtract to		4 3	
move everything to the left side.			
-multiply the left sides together			
Ex. $x = -3$ $x = \frac{2}{3}$ + $3 \cdot 3 \cdot 3$ x + 3 = 0 $3x = 2-2 - 2x + 3 = 0$ $3x - 2 = 0(x + 2)(2x - 2)$	#2 $x = -1$ $x = \frac{3}{5}x = 1$	#4 A person dives off of a board into the water. She goes under 2 seconds after diving and resurfaces 4.5 seconds after diving. Write an equation to represent the time that she was underwater (no decimals).	
(x+3)(3x-2) $3x^2 + 9x - 2x - 6$			
$3x^{2} + 9x - 2x - 6$			
3x + 7x = 0			
$y = 3x^2 + 7x - 6$			
QUADRATICS OF BEST FIT	l		
How?	#1	#3	
x-value a b c	x -1 0 1 2 4	time 0 1 3 4	
y-value d e f	y 6 1 -2 2 21	height 0 13 100 200	
-stat -> edit -> type x-values in L1 and		What is the height after 12 seconds?	
y-values in L2.	What is x when y=3?		
-stat->calc->quadreg->vars-> y-vars->			
function-> y1 -> enter			
- To find an x-value, type the given y-	What is y when x=-2?	At what time(s) would the object be	
value into yz= and z ^m ->trace ->		490 reet nigh?	
-to find a v-value 2 nd -> trace ->			
value -> type given x-value -> enter			
FOCUS AND DIRECTRIX			
How? $(y - k) = \frac{1}{2}(x - h)^2$	#1 Find the focus, directrix, and	#3 Find the focus, directrix, and	
romember (h k) is the vertex. D is	vertex of	vertex of	
the distance from the vertex to the	$(y-2) - \frac{1}{2}(x+3)^2$	$y = 3(x+2)^2 - 5$	
focus.	$(j - 2) = \frac{1}{8}(x + 3)$		
-plug in your information or gather			
your information from this equation.			
Fx. Write an equation for a parabola	#2 Write an equation for a	#4 Find the focus of a guadratic with	
with a directrix of $y = -3$ and a	parabola with a directrix of $y = 2$	a vertex of (3,-5) and a directrix of	
focus of (5,7)	and a focus of (3,0)	y = -9	
Vertex at (5,2) and $p = 7 - 2 = 5$			
$(y-k) = \frac{1}{4p}(x-h)^2$			
$(y-2) = \frac{1}{4(5)}(x-5)^2$			
$(y-2) = \frac{1}{20}(x-5)^2$			