Polynomials Unit

Division		
Long Division		
Before beginning, look for skips in the power of each term. Add a place holder for missing powers. Make a "house" and put the dividend inside of the house and the divisor outside. Divide the first term of the dividend by the first term of the divisor. Multiply each term of the divisor by the answer from the previous step. Write that polynomial beneath the dividend. Subtract the appropriate terms form the dividend. Repeat.	1. $(x^2 - 7x - 11) \div (x - 8)$	2. $(5x^2 - 15) \div (2x - 6)$
Ex: $(3x^3 - 5x^2 + 10x - 3) \div (3x + 1)$ $\frac{x^2 - 2x + 4}{3x + 1)3x^3 - 5x^2 + 10x - 3}$ $-(3x^3 + 1x^2)$ $-6x^2 + 10x - 3$ $-(-6x^2 - 2x)$ $12x - 3$ $-(12x + 4)$ -7 Remainder: -7	3. $(4k^5 - 3k^3 + 6k^2 - 5) \div$ (k - 7)	4. A rectangular prism has a volume of $18x^3 + 27x^2 - 50x -$ 75 and a length of $(2x + 3)$. Find the width and height in terms of x.
Synthetic Division		
Make your division pit. Place the zero form of the divisor outside the pit. Place the coefficients of the dividend (with place holders) in order inside the pit. Bring down the first coefficient. Multiply it by the root and place that number under the second coefficient in the pit. Add them and write the answer below. Repeat for remaining coefficients. The answers are the coefficients for the new polynomial.	5. $(x^2 + 10x + 18) \div (x + 5)$ 7. $(x^2 - 28) \div (x - 5)$	6. $(x^5 - 3x^2 + 2) \div (x - 3)$
EX: $(3x^3 - 2x^2 + 3x - 4) \div (x - 3)$ 3 3 -2 3 -4 9 21 72 3 7 24 68 Answer: $3x^2 + 7x + 24$, R: 68		

Polynomials Unit

Remainder Theorem	Remainder Theorem				
The remainder of a division problem is	8. Is $(x - 4)$ a factor of	9. Is $(x + 3)$ a factor of			
equal to the dividend evaluated at the	$3x^3 - 8x^2 + 12x - 1?$	$4x^3 - 36x?$			
remainder.					
The divisor is a root of the dividend if the					
remainder of the division problem is zero.					
EX: Is $(x + 2)$ a factor of					
$x^3 - 8x + 6?$					
	10. If $(x^2 - 3x + b) \div (x + 1)$ has a	11. If $(ax^2 + 2x + 6) \div (x - 2)$			
Putting $(x + 2)$ in factor form, we get	remainder of 5 what is b?	has a remainder of -2, what is $(2^2 + 2^2 + 2^2) + (2^2 + 2^2)$			
x = -2.		$(ax^2 + 2x + 6) \div (x - 5)?$			
$(-2)^3 - 8(-2) + 6 = 30$					
Since 30 is not equal to zero, $(x + 2)$ is					
not a factor of $x^3 - 8x + 6$					
Special Cases: Sum and Difference of Cube					
$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$	12. Factor $64c^3 + 1$	13. Factor $1000y^2 - 8y^{17}$			
$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$					
Remember the pattern and identify a and					
b. Then substitute into the formula.	44 5-1-27-3 (4-3	45 5 4 4 4 6 4			
	14. Factor $27x^3 - 64y^3$	15. Factor $x^6 - 64$			
EX: Factor $8 - 125x^3$					
a = 2, b = 5x					
$(2-5x)(4+10x+25x^2)$					
Polynomial Expansion					
Pascal's Triangle	16. Expand $(x + 3)^5$	17. Find the second term of			
1		$(2x + 3y)^6$			
11					
1 2 1 1 3 3 1					
1 4 6 4 1 10=6+4					
1 5 10 10 5 1					
1 6 15 20 15 6 1					
Use Pascal's Triangle and the Binomial					
Theorem to construct each term in the					
expansion. $\sum_{n=1}^{n}$					
Expansions are in the form $(a + b)^n$					
Each expansion will have $n + 1$ terms.	18. Find the coefficient of x^2 in	19. Change the following from			
The first term of each expansion will be h^n	$(x-2)^4$	vertex form to standard form.			
a^n and the last term will be b^n .		$f(x) = 2(x+5)^3 + 1$			
Locate the appropriate row in Pascal's					
triangle for the coefficient for each term.					
Exponents of a decrease from n and the					
exponents of <i>b</i> increase from 0.					
EX: Write $(x - 5)^4$ in standard form.					
$(1)x^4 + 4(x^3)(-5) + 6(x^2)(-5)^2$					
$+ 4(x)(-5)^3 + 1(-5)^4$ Which simplifies to					
$x^4 - 20x^3 + 150x^2 - 500x + 625$					
x = 20x + 150x = 500x + 025					

Polynomials Unit

Finding All Roots		
Graph the polynomial on your calculator.	20. Find all roots of the polynomial	21. Find all roots of the
Use the roots you find to create the	$y = 2x^4 + 11x^3 + 8x^2 - x + 60.$	polynomial $y = x^4 - 64$.
factors to divide out of the polynomial.	y = 2x + 11x + 0x - x + 00.	polynomial $y = x^2 = 04$.
Divide the first factor out of the		
polynomial. Repeat the process using the		
next root and the quotient from the		
division.		
Once you are down to a quadratic		
quotient, use the quadratic formula to		
find the remaining roots.		
EX: Find all roots for the polynomial		
$y = 6x^4 - x^3 - 3x^2 - 2x - 30$		
Roots from calculator, $x = -1.5 = -\frac{3}{2}$		
and $x = 1.6666 = \frac{5}{3}$ which results in the		
factors $(2x + 3)$ and $(3x - 5)$.		
Divide out the two roots.		
$(6x^4 - x^3 - 3x^2 - 2x - 30) \div (2x + 3)$		
results in		
$3x^3 - 5x^2 + 6x - 10$		
Now divide using the second root.		
$(3x^3 - 5x^2 + 6x - 10) \div (3x - 5)$		
This results in the quadratic $x^2 + 2$		
Use the quadratic formula to find the		
remaining roots; $x = \pm 2i$.		
Writing Polynomials from Roots		
Take the roots and set them equal to zero	22. Write an equation of a	23. Write an equation of a
to get them in factor form.	polynomial with the roots	polynomial with the roots
Multiply all the roots together.	$x = 0, x = -\frac{3}{2}, x = 1, x = \frac{2}{3}.$	$x = 5, x = 2, x = -\frac{3}{7}$
EX: Write an equation of a polynomial	_	
with the roots $x = 4$, $x = -3$, $x = \frac{2}{3}$.		
with the foots $x - 4$, $x5$, $x - \frac{1}{3}$.		
Factors are $(x - 4)$, $(x + 3)$, and		
(3x-2)		
f(x) = (x - 4)(x + 3)(3x - 2)		