I. Function Characteristics

Domain: Interval of possible x values for a given function. (Left,Right)

Range: Interval of possible y values for a given function. (down, up)

End Behavior: What is happening at the far ends of the graph?

For each	Left side	Right side
side	$x \rightarrow-\infty$,	$x \rightarrow \infty$
Pick one	Points Down	Points Up
of these	$y \rightarrow-\infty$	$y \rightarrow \infty$

Increasing Intervals: Interval of \underline{x} values for which the corresponding y values are increasing.

Decreasing Intervals: Interval of x values for which the corresponding y values are decreasing.
x-Intercepts: points where the graph crosses the x axis. $(x, 0)$
\mathbf{y}-Intercepts: points where the graph crosses the y axis. $(0, y)$

Maximums: points where the graph changes from increasing to decreasing. Peaks in the graph.

Minimums: points where the graph changes from decreasing to increasing. Valleys in the graph.

E1	
Domain: $[4, \infty)$ Range: $[2, \infty)$ Increasing Intervals: $[4, \infty)$ Decreasing Intervals: None	End Behavior: As $x \rightarrow-\infty, y \rightarrow 2$ As $x \rightarrow \infty, y \rightarrow \infty$ x-Intercepts: None y-Intercepts: None Maximums: None Minimums: None
Domain: Range: Increasing Intervals: Decreasing Intervals:	End Behavior: As $x \rightarrow-\infty, y \rightarrow$ As $x \rightarrow \infty, y \rightarrow$ x-Intercepts: y-Intercepts: Maximums: Minimums:
	Domain: Range: Increasing Intervals: Decreasing Intervals: End Behavior: As $x \rightarrow-\infty$, As $x \rightarrow \infty$, x-Intercepts: y-Intercepts: Maximums: Minimums:

II. Fu Gene	nction Transformations al form: $g(x)=a f(x-h)+k$	E2. $g(x)=-(x-4)^{3}-1$ Parent Function: cubic Transformations: flip vertically shift right 4 units shift down 1 unit		P3. $g(x)=2^{x-3}+5$ Parent Function:
$\begin{aligned} & f(x) \\ & g(x) \\ & a \end{aligned}$	parent function transformed function if negative, flip vertically			Transformations:
	$0<\|a\|<1$ vertical compression $\|a\|>1$ vertical stretch	E3. $g(x)=3 \sqrt{x+1}-7$ Parent Function: Radical (square root)		P4. $g(x)=-(x+7)^{2}$ Parent Function:
	if negative, horizontal shift right if positive, horizontal shift left	Transformations: Stretch by a factor of 3 Shift left 1 unit		Transformations:
	if negative, vertical shift down if positive, vertical shift up	Shift down 7 units		
Examples		E4. $g(x)=-\frac{1}{2}(x-3)^{2}+1$		$\text { P5. } g(x)=2 \log (x-2)-$ 1
E1. $g(x)=x^{2}+2$		quadratic		Parent Function:
Parent Function:		Flip vertically		Transformations:
Transformations:shift up 2 units		Compression Shift Right 3 Shift up 1 uni	by a factor of $\frac{1}{2}$ nits	
III. Graphing a function from an equation -			E5. Graph $f(x)=(x-1)^{2}-4$	
				$10 \uparrow$
1. Identify the parent function to determine a general shape.			$\stackrel{y}{x}$	
2. Think about where the vertex or critical points are usually				.
found for the parent function.			10-8-6	1 2
3. Where are the critical points of the new function given the transformations in the equation? Since there is a horizontal shift right 1 unit and a vertical shift down four units, the				
vertex is at the point (1,-4).				
4. Use the location of the critical points to sketch the new graph.				

Graphing a function from an equation

1. Identify the parent function to determine a general shape.
2. Think about where the vertex or critical points are usually found for the parent function.
3. Where are the critical points of the new function given the transformations in the equation?
4. Plot your critical points and sketch in the graph.

P6. Graph $f(x)=-|x+2|+6$

Writing Function Equation from a

 description of the transformationsHow do translations effect the function equation?
$f(x)=-\quad-a(x-h)+k$
a compression or stretch
h horizontal shift in the opposite direction of the sign
k vertical shift in the same direction of the sign

E6

Write the equation for a quadratic function with a vertical shift down 3 , left 7 and a vertical stretch by a factor of 4 .

Quadratic: x^{2}
Down 3: subtract 3 on the "outside" Left 7: add 7 to x (inside)
V. stretch by 4 : multiply the "x part" by 4

$$
y=4(x+7)^{2}-3
$$

P7. Write the equation for an absolute value function that has been shifted down three units and left 17 units.

P8. Write the equation for a Quadratic function that has been flipped vertically, shifted up 5 units, and shifted right 2 units.

P9. Write the equation for a square root function that has been shifted down 11 units, shifted left 5 units, and stretched by a factor of 2.

P10. Write the equation for an absolute value function that has been compressed by a factor of 2 and shifted down three units.

| Steps for Determining Equation from | |
| :--- | :--- | :--- |
| Graph | |
| What's the parent function? | |
| Has the same shape as a | |
| cubic function | |
| Where's the vertex or critical point of | |
| the parent function? | |
| (0,0) | |
| Where's the vertex or critical point of | |
| this function? | |
| $(2,1)$
 How did we get from the parent
 function critical point to the critical
 point of this function?
 Right 2 and up 1 | |
| How do I translate those changes into
 an equation?
 Horizontal changes go with the x
 Vertical changes go outside the x | $y=(x-1)^{3}+2$ |

Shifts of Shifts

In these types of problems, you start with a function that has already been shifted around and now you're going to apply some more shifts.

E8. $f(x)=(x+1)^{2}-1$,
If this function is shifted left 3 units, up 2 units, flipped vertically and stretched by a factor of 4 what is the resulting function equation?

Left 3	add 3 to the number "with x"	$1+3=4$
Up 2	add 2 to the number "outside" of x	$-1+2=1$
Flipped vertically	flip the sign in front of the equation	change to -
Stretched by 4	Multiply the number in front by 4	$1(4)=4$

Resulting function: $\quad g(x)=-4(x+4)^{2}+1$

P10. $f(x)=2(x)^{3}+4$
If this function is shifted up 2, right 1 and compressed by a factor of 6 what is the resulting equation?

P11. $f(x)=-|x-5|$
If this function is shifted up 4, left 3, stretched by a factor of 2, and flipped vertically, what is the resulting equation?

Shifts of Shifts part 2

In this type of problem you have to identify the transformations that would change one function equation to another.

E9. What transformations would change the function equation
$f(x)=-3 \sqrt{x-4}+1$ to $g(x)=27 \sqrt{x+5}+7$

	Original	New	How to get there
Horizontal	-4	+5	$+5-(-4)=9$ Left 8
Vertical	+1	+7	$+7-(+1)=6$ Up 6
Flip	-	+	Signs Changed Vertical Flip
Compression or Stretch	3	27	$27 \div 3=9$ Stretch factor of 9

P13. What transformations would change the function equation $f(x)=|x+2|-3$ to $g(x)=-2|x+1|+2$

	Original	New	How to get there
\mathbf{H}			
\mathbf{V}			
F			
C/S			

