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Target:  On completion of this worksheet you should be able to use the remainder 
and factor theorems to find factors of polynomials. 
 
                                                               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A26 

Generally when a polynomial is divided by a linear 
expression there is a remainder. 

5)123)(2()3543(
5
2
3

42
52

63

123
35432

)2()3543( e.g.

223

2

2

23

2

23

23

+−−+=+−+

−−
+−

−−

−−

+

−−
+−++

+÷+−+

xxxxxx

x
x

xx
xx

xx

xx
xxxx

xxxx

 

 
 
 
 
 
Any polynomial can be written in the following 
form: 
polynomial ≡ divisor × quotient + remainder. 
 
In particular if the divisor is (x – a) and the 
polynomial is f (x) then 
 
 f (x) ≡ (x – a) × quotient + remainder. 
 
If x = a then 
 f (a) = (a – a) × quotient + remainder. 
 f (a) = remainder 
 
This gives an easy way of finding the remainder 
when a polynomial is divided by (x – a) 

Examples 
1.  Using previous example 
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Now using x = -2  
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i.e. the remainder. 
 
2.  Find the remainder when 
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The remainder is –5 
 
3.  Find the remainder when 
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The remainder is 101 

divisor quotient remainder 

Exercise 
Find the remainders for the following: 

)4()4(.5
)3()562(.4

)1()132(.3
)1()234(.2
)2()465(.1
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(Answers: -4, 10, 5, -29, -4) 
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Example 
Find the remainder when 

02151413)1(
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The remainder is 0. 
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so )1( −x is a factor of )2543( 23 −−+ xxx  
 
We can use the remainder theorem to check for 
factors of a polynomial. 
As before  
 remainder quotient  )()( +×−= axxf  
and remainder )( =af  
If )( ax −  is a factor then the remainder is 0 
ie 0)( =af  
This is called the factor theorem. 

We can use the factor theorem to factorise 
polynomials, although some trial and error is 
involved. 

Examples 
1.  Is )3( −x a factor of )3832( 23 −−− xxx ? 
 
Let 3  and  )3832()( 23 =−−−= xxxxxf  
as we are checking whether )3( −x is a factor. 

03383332)3( 23 =−×−×−×=f  

so )3( −x is a factor of )3832( 23 −−− xxx  
 
2.  Is )1( −x a factor of )3832( 23 −−− xxx ? 
 
Using  f(x) as above and x = 1 
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so )1( −x is not a factor of )3832( 23 −−− xxx  

Exercise 
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(Answers: yes, yes, no, yes, no) 

Example 
Factorise  )652( 23 −−+ xxx . 
 
Let 652)( 23 −−+= xxxxf .  Since the 
constant is –6 we will consider factors of this  
ie.  ± 1, ± 2, ± 3, ± 6.  We will try )1( −x  

0611512)1( 23 =−−×+×=f  
so )1( −x is a factor. 
Now we can find the quadratic factor by division 
or by repeating the above. 
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The quadratic factor is factorised in the normal 
way. 

Exercise 
Factorise the following: 
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Answers: 

)34)(2)(1(.5
)13)(2(.4
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