DIVISION		
Long Division		
Before beginning, look for skips in the power of each term. Add a place holder for missing powers. Make a "house" and put the dividend inside of the house and the divisor outside. Divide the first term of the dividend by the first term of the divisor. Multiply each term of the divisor by the answer from the previous step. Write that polynomial beneath the dividend. Subtract the appropriate terms form the dividend.	1. $(x^2 - 7x - 11) \div (x - 8)$	2. $(5x^2 - 15) \div (x - 6)$
Repeat.		
Ex: $(3x^3 - 5x^2 + 10x - 3) \div (3x + 1)$ $\frac{x^2 - 2x + 4}{3x + 1)3x^3 - 5x^2 + 10x - 3}$ $-(3x^3 + 1x^2)$ $-6x^2 + 10x - 3$ $-(-6x^2 - 2x)$ $12x - 3$ $-(12x + 4)$ -7	3. $(k^3 + 2k^2 - 20k + 4) \div$ (k + 7)	4. A rectangular prism has a volume of $18x^3 + 27x^2 - 50x - 75$ and a length of $(2x + 3)$. Find the width and height in terms of x.
Remainder: -7		
Synthetic Division		
Make your division pit. Place the zero form of the divisor outside the pit. Place the coefficients of the dividend (with place holders) in order inside the pit. Bring down the first coefficient. Multiply it by the root and place that number under the second coefficient in the pit. Add them and write the answer below. Repeat for remaining coefficients.	5. $(x^2 + 10x + 18) \div (x + 5)$	6. $(x^5 - 3x^2 + 2) \div (x - 3)$
The answers are the coefficients for the	7. $(x^2 - 28) \div (x - 5)$	
new polynomial.		
EX: $(3x^3 - 2x^2 + 3x - 4) \div (x - 3)$ 3 3 -2 3 -4 9 21 72 3 7 24 68		

REMAINDER THEOREM						
The remainder of a division problem is equal to the dividend evaluated at the remainder.	8. Is $(x - 4)$ a factor of $3x^3 - 8x^2 + 12x - 1?$	9. Is $(x + 3)$ a factor of $4x^3 - 36x$?				
The divisor is a root of the dividend if the remainder of the division problem is zero.						
EX: Is $(x + 2)$ a factor of $x^3 - 8x + 6$? Putting $(x + 2)$ in factor form, we get x = -2. $(-2)^3 - 8(-2) + 6 = 30$	10. If $(x^2 - 3x + b) \div (x + 1)$ has remainder of 5 what is b?	s a				
Since 30 is not equal to zero, $(x + 2)$ is not a factor of $x^3 - 8x + 6$						
SPECIAL CASES						
Difference of squaresA difference of squares is a quadraticof the form $(a^2 - b^2)$. This specialcase quadratic will always factor asfollows: $(a^2 - b^2) = (a + b)(a - b)$	2. $9x^2 - 25$	13. $1 - 9y^2$				
EX: Factor the expression $(x^2 - 36)$ Since both x^2 and 36 are perfect squares the factored form is $(x^2 - 36) = (x + 6)(x - 6)$	4. $x^2 - 16y^2$	15. $32x^2 - 18$				
EX: Factor the expression $(9x^2 - 1)$ $(9x^2 - 1) = (3x + 1)(3x - 1)$						
Sum and difference of cubes	2					
Sum and difference of cubes are of the form $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$	16. Factor 64 c^3 + 1	17. Factor $8y^3 + 27$				
Use the pattern to identify a and b . Then substitute into the formula. EX: Factor $8 - 125x^3$	18. Factor $27x^3 - 64y^3$	19. Factor $x^6 - 64$				
$a = 2, b = 5x$ $(2 - 5x)(4 + 10x + 25x^{2})$						

POLYNOMIAL EXPANSION		
Pascal's Triangle	20. Expand $(x + 3)^5$	21. Find the second term of
1		$(2x + 3y)^6$
1 1 1 2 1		
1 3 3 1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
1 5 10 10 ⁴ 5 1 1 6 15 20 15 6 1		
Use Pascal's Triangle and the Binomial		
Theorem to construct each term in the		
expansion.		
Expansions are in the form $(a + b)^n$		
Each expansion will have $n + 1$ terms.		
The first term of each expansion will be	22. Find the coefficient of x^2 in	23. Change the following from
a^n and the last term will be b^n .	$(x-2)^4$	vertex form to standard form.
Locate the appropriate row in Pascal's		$f(x) = 2(x+5)^3 + 1$
triangle for the coefficient for each term.		
Exponents of a decrease from n and the		
exponents of <i>b</i> increase from 0.		
EX: Write $(x - 5)^4$ in standard form.		
$(1)x^4 + 4(x^3)(-5) + 6(x^2)(-5)^2$		
$+4(x)(-5)^3+1(-5)^4$		
Which simplifies to		
$x^4 - 20x^3 + 150x^2 - 500x + 625$		
Finding All Roots		
Graph the polynomial on your calculator.	24. Find all roots of the polynomial	25. Find all roots of the
Use the roots you find to create the	$y = 2x^4 + 11x^3 + 8x^2 - x + 60.$	polynomial
factors to divide out of the polynomial.		$y = x^4 - 4x^3 + 8x^2 - 16x +$
Divide the first factor out of the		16.
polynomial. Repeat the process using the		
next root and the quotient from the		
division. Once you are down to a quadratic		
quotient, use the quadratic formula to		
find the remaining roots.		
The the remaining roots.		
EX: Find all roots for the polynomial		
$y = 6x^4 - x^3 - 3x^2 - 2x - 30$		
Roots from calculator, $x = -1.5 = -\frac{3}{2}$		
and $x = 1.6666 = \frac{5}{3}$ which results in the		
factors $(2x + 3)$ and $(3x - 5)$.		
Divide out the two roots.		
$(6x^4 - x^3 - 3x^2 - 2x - 30) \div (2x + 3)$		
$(3x^2 - x^2 - 3x^2 - 2x - 30) \div (2x + 3)$ results in		
$3x^3 - 5x^2 + 6x - 10$		
Now divide using the second root.		
$(3x^3 - 5x^2 + 6x - 10) \div (3x - 5)$		
This results in the quadratic $x^2 + 2$		
Use the quadratic formula to find the		
remaining roots; $x = \pm 2i$.		
	1	

WRITING POLYNOMIALS FROM ROOTS	5											
In the previous unit we looked at writin quadratic equations from roots. Any polynomial can be written from its root There are just more of them. Take the roots and set them equal to zero to get them in factor form. Multiply all the roots together. EX: Write an equation of a polynomial with the roots $x = 4, x = -3, x = \frac{2}{3}$.	ts.	polyno	omial w	vith the	on of a e roots = 1, <i>x</i> =	$=\frac{2}{3}$.		27. Wripolyno $x = 5$,	mial w	ith the	roots	
Factors are $(x - 4)$, $(x + 3)$, and (3x - 2) f(x) = (x - 4)(x + 3)(3x - 2)												
REGRESSION MODELINGUse data and the graphing calculatorto create a quadratic equation thatwill model real world situations.x-value123y-value148First enter your data[STAT] [EDIT]type x-values in L1type y values in L2Next create regression equation[STAT][CALC][5:QuadReg] [VARS] [Y-VARS] [1:Function][Y1][ENTER]	qua que x y What	dratic r stions	nodel. below. 0 1 e predi	The a	v to cre nswer t 2 alue of		ti tl C d	9. A ball i able below he ball aft create a q lata and a time height What is the econds?	w repreter a nu uadrati nswer 0 0	esents f umber of c mode the que 1 13	the heip of seco el from estions 3 100	ght of nds. the below. 4 200
To find an x-value, Type the given y-value into $y_2 =$ Press [2 nd] [TRACE] [5] – intersect Press [ENTER] [ENTER] [ENTER] To find a y-value Press [2 nd][TRACE][VALUE] Type given x-value Press [ENTER] In addition to quadratic regression mod	dels,	Cubic (6) and	Quarti		odels ca	4		igh?	d on th	ne data	
In addition to quadratic regression mod different models may fit more closely. value closest to 0. Make sure diagnosti diagnosticsOn).	Use	the R^2	value t	to dete	rmine t	he best	m	odel. Sele	ect the	model	with th	ne <i>R</i> ²