Logarithms and Exponential Functions

Exponential Models					
Clues in the word problems tel	•				
growth or decay model. If you use the "Pert" Formula.	r interest is compoun	ded, check for the word co	ontinuous. That's your clue to		
use the Fert Tornula.			Continuously		
Simple Interest	Simple Interest		Compounded		
Growth	Decay	Compound Interes	t Interest		
$A(t) = a(1+r)^t$	$A(t) = a(1-r)^t$	$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$	$A(t) = Pe^{rt}$		
A(t) Amount after time t. t Time	a Initial amoun n Number of in one year	r Rate expressed as a decimnterest payments in P Initial investment			
Growth		1.) The yellow bellied sag			
Example baseball card bought for \$150 increases in value at a rate of 3% each year. How much is the card		growth rate of approximately 4.7% If the population was 8,530 in 2000 and this growth rate continues,			
worth in 10 years?		about how many yellow bellied sapsuckers will there			
$A = 150(1 + .03)^{10}$		be in 2006?	·		
Decay		2.) Amy Farah Fowler boug			
You bought a new Ford truck for \$40,000 yesterday. The truck <u>depreciates</u> a rate of 11% each year. How		Suppose the car depreciates at a rate of 13% per year. How much will the car be worth in 4 years?			
much is your truck worth 8 years			thin 4 years:		
A = 40000(1 -	11) ⁸				
11 10000(1)				
Compound Interest		3.) If you put \$2400 in an a	ccount that pays 6.2% interest		
Your favorite Aunt gives you a qui		compounded quarterly. How much will you have in eight			
lucky day! You win \$1500. You gi and put the rest in a savings accou	•	years?			
interest <u>compounded monthly</u> . H	low much money will				
you have in 10 years?					
$A = 1000(1 + \frac{.03}{12})$	$)^{(12)(10)}$				
Continuous Compounding	Continuous Compounding		4.) If you put the same \$2400 in an account that pays 5.7%		
Your Aunt decides to deposit thes a savings account at her bank. Th		interest compounded continuously. How much will you have in eight years?			
interest and compounds <u>continue</u> money will she have in this accou	ously. How much	have in cibire years:			
$A = 500e^{(.035)}$)(8)				
		1			

Logarithms and Exponential Functions

Study Guide

Inverse Functions				
To find the inverse of a function,	Find the inverse of each function:			
1. Switch x and y values				
2. Solve for y	5.) $f(x) = 2x^2 - 8$	6.) $f(x) = \frac{x}{4} + 3$		
Inverse notation: $f^{-1}(x)$				
For logs and exponents, put the equation in the "other form". Then switch x and y, solve for y.	7.) $f(x) = 3^{x-2}$			
$y = \log_4(16x)$ Find the inverse $x = \log_4(16y)$ Switch x and y $4^x = 16y$ Put in exponent form $4^x/16 = y$ Solve for y $4^{x-2} = y$ Simplify if possible	8.) $f(x) = \log(2x - 1)$			
y=4×Find the inversex=4 ^y Switch x and yySwitch z and y				
y=log ₄ x Put in log form Definition of Logarithms				
THE Relationship	Write the following in log form:			
If $y = b^x$, then $\log_b y = x$	9.) $6^2 = 36$ 10.) $5^3 = 12$	25 11.) $2^4 = 32$		
Write $6^2 = 36$ in log form				
$log_6 36 = 2$	Write the following in exponential form:			
Write $log_2 64 = 6$ in exponential form	12.) $\log_2 8 = 3$ 13.) $\log_3 81 = 4$			
$2^6 = 64$				
	14.) $\log_4 16 = 2$			
Change of base formula	Common log	Natural Log		
$\log_b x = \frac{\log x}{\log b}$	log ₁₀ is written as log	log _e is written as ln		
Evaluate log_6 32	15.) Evaluate $log_2 8$	16.) Evaluate $log_{0.25}0.0625$		
$\log_6 32 = \frac{\log 32}{\log 6} = 1.9343$				

EX 1 : <u>Condense</u> the following into one log statement. $3 \log_4 x + 2 \log_4 y$ Step 1: Move the constants in front of the log statements into the exponent position. $\log_4 x^3 + \log_4 y^2$ Step 2: Combine the arguments.	EX2: Expand the expression $log \frac{x}{yz^2}$ Step 1: Deal with the division operation first. Split the argument into two logs. $log x - log yz^2$ Step 2: Split any statements with multiplication into addition operations. Be sure to distribute the negative from the division.
Change subtraction to multiplication and addition to multiplication. $log_4 x^3 y^2$	$\log x - (\log y + \log z^2)$ $\log x - \log y - \log z^2$ Step 3: Move any exponents in front of the log statement. $\log x - \log y - 2\log z$
nts	19.) $\log_3 2x - 5\log_3 y$
$18.) \frac{1}{3} \log 3x + \frac{1}{3} \log 3x$	
22.) $\log_2 \frac{x}{yz}$	23.) $\log \sqrt{\frac{2rst}{5w}}$
	log statement. $3 log_4 x + 2 log_4 y$ Step 1: Move the constants in front of the log statements into the exponent position. $log_4 x^3 + log_4 y^2$ Step 2: Combine the arguments. Change subtraction to multiplication and addition to multiplication. $log_4 x^3 y^2$ Its 18.) $\frac{1}{3} \log 3x + \frac{2}{3} \log 3x$

Study Guide

Solve Exponential and Logarithmic Equations					
To solve an exponential equation, take	Solve the equation 3^{x-2} +	5 = 74.	Solve the equation $log_2 4x = 5$		
the log of both sides, and solve for the					
variable.	$3^{x-2} = 69.$	Subtract 5 from both	$4x = 2^5$ Put in exponential form.		
To solve a logarithmic equation,	$\log(3^{x-2}) = \log 69$	sides. Take the	4x = 32 Simplify right		
rewrite the equation in exponential		log of both sides	x = 16 side both		
form and solve for the variable.	$(x-2)\log 3 = \log 69$	Simplify the left	x = 10 sides by log 4.		
Other helpful properties:	log 69	side Evaluate			
$log_b b^x = x$	$x - 2 = \frac{\log 69}{\log 3}$	logs			
$b^{\log_b x} = x$	x - 2 = 3.85 x = 5.85	Solve for x			
Solve the following equations	$\lambda = 5.05$				
24.) $8^{n+1} = 3$	25.) $10^{3y} = 5$		26.) $4^x - 5 = 12$		
27.) $\log (2x + 5) = 3$	28.) $\log 4x = 2$		29). $2 \log (2x + 5) = 4$		
	Law		Example		
	$x^1 = x$		6 ¹ = 6		
	x ⁰ = 1		7 ⁰ = 1		
	$x^{-1} = 1/x$		$4^{-1} = 1/4$		
	$x^m x^n = x^{m+n}$		$x^2x^3 = x^{2+3} = x^5$		
Laws of Exponents	$x^m/x^n = x^{m-n}$		$x^{6}/x^{2} = x^{6-2} = x^{4}$		
	$(x^m)^n = x^{mn}$		$(x^2)^3 = x^{2 \times 3} = x^6$		
	$(xy)^n = x^n y^n$		$(xy)^3 = x^3y^3$		
	$(x/y)^n = x^n/y^n$		$(x/y)^2 = x^2 / y^2$		
	$x^{-n} = 1/x^n$		$x^{-3} = 1/x^3$		
An	the law about Fractional Exponents:				
	$x^{\frac{m}{n}} = \sqrt[n]{x^m}$		$x^{\frac{2}{3}} = \sqrt[3]{x^2}$		
	$=(\sqrt[n]{x})^m$		$=(\sqrt[3]{x})^2$		