Name:

- 1. Which pair of functions are inverses of each other?
 - A. $y = \frac{1}{2}x + 2, y = 2x 4$ B. $y = 2x - 5, y = \frac{1}{2}x - \frac{1}{5}$
 - 5 55 2
 - C. $y = \frac{1}{4}x + 3, y = 4x 3$
 - D. y = 4x + 1, y = x + 4

Date:

3. Which pair of functions are inverses of each other?

A.
$$f(x) = -x - 3$$
, $g(x) = x + 3$

- B. $f(x) = \frac{1}{8}x \frac{3}{2}, g(x) = \frac{2}{3} + 8$
- C. f(x) = 4x 3, g(x) = 3x 4
- D. $f(x) = \frac{1}{2}x + 3$, g(x) = 2x 6

4. Which pair of functions are inverses of each other?

A.
$$y = \frac{1}{2}x^2 - 1, x \ge 0; \quad y = 2\sqrt{x+1}$$

B. $y = 4x^2 - 3, x \ge 0; \quad y = \frac{\sqrt{x}}{2} + 3$
C. $y = 2x^2 + 6, x \ge 0; \quad y = \sqrt{\frac{x-6}{2}}$
D. $y = -x^2 - 5, x \le 0; \quad y = \sqrt{-x+5}$

5. If $f(x) = \frac{2}{x-1}$ and $g(x) = \frac{2+x}{x}$, are f and g inverse functions? Why or why not?

- 2. Which pair of functions are inverses of each other?
 - A. f(x) = 3x 2, $g(x) = \frac{x+2}{3}$ B. f(x) = 6x + 2, g(x) = 2x - 6C. $f(x) = \frac{1}{3}x + 2$, g(x) = 3x - 2D. $f(x) = 4x - \frac{2}{7}$, $g(x) = \frac{2x + 7}{4}$

6. Which of the following is the graph of $f^{-1}(x)$ if $f(x) = \sqrt{x-2} + 3$?

7. The data below is for a certain function h(x).

x	h(x)	
-3	21	
1	3	
4	1	
8	-5	

Through which of the following points does the inverse function $h^{-1}(x)$ have to pass?

	A.	(-21, 3)	В.	(1,4)
--	----	----------	----	-------

C. (5,8) D. (3,-1)

Problem-Attic format version 4.4.217

© 2011-2014 EducAide Software Licensed for use by randalll.dixon@cms.k12.nc.us Terms of Use at www.problem-attic.com

Inverse Functions Worksheet 10/27/2014

1. Answer: Objective:	A F.BF.04B
2. Answer: Objective:	B F.BF.04B
3. Answer: Objective:	D F.BF.04B
4. Answer: Objective:	C F.BF.04B
5. Answer: Objective:	Answers may vary: Example: Yes, $f \circ g = \frac{2}{\frac{2+x}{x}-1} = \frac{2x}{2+x-x} = x$, $g \circ f = \frac{2+\frac{2}{x-1}}{\frac{2}{x-1}} = \frac{2x-2+2}{2} = x$, $f \circ g = x$ and $g \circ f = x$ and no domain restrictions are necessary. F.BF.04B
6. Answer: Objective:	C F.BF.04C
7. Answer: Objective:	B F.BF.04C