FACTORING USING THE SWING METHOD

Factor the expression$6 x^{2}-11 x-7$				Factor the expression$10 x^{2}+13 x-3$		
STEP 1 Factor out the GCF if possible No GCF				STEP 1 Factor out the GCF if possible		
STEP 2 Multiply a and c				STEP 2 Multiply a and c		
	a	c	$a \times c$	a	c	$a \times c$
	6	-7	-42			

STEP 3 Write out the factors of $a \times c$. Find the two factors that add up to b.

Factors of $a \times c$		Sum of Factors
1	-42	-41
2	-21	-19
3	-14	-11
6	-7	-1

STEP 4 Construct two factors as follows where f_{1} and f_{2} are the two factors identified in step 3.

$$
\left(x+\frac{f_{1}}{a}\right)\left(x+\frac{f_{2}}{a}\right)
$$

Then simplify the fractions if possible.
For our example the interim factors are

$$
\left(x+\frac{3}{6}\right)\left(x-\frac{14}{6}\right)
$$

Simplified

$$
\left(x+\frac{1}{2}\right)\left(x-\frac{7}{3}\right)
$$

STEP 5 Swing the denominator of any remaining fractions in front of the x. This leaves us with

$$
(2 x+1)(3 x-7)
$$

STEP 3 Find the factors of $a \times c$ that add up to b.
You can use the calculator to help you. Enter the expression $a \times c / x$ into y_{1}. Check the table. You now have a list of the factors of $a \times c$. You're only interested in the table entries in which x and y_{1} are both integers.

STEP 4 Create your two factors using the factors of $a \times c$ you found in step 3 .

$$
\left(\begin{array}{lll}
x &)(x &)
\end{array}\right.
$$

Divide each constant by a and simplify the fraction.

$$
(x \quad)(x \quad)
$$

STEP 5 Swing the denominator of any remaining fractions in front of the x.

$$
(\quad)(\quad)
$$

Factor the following expressions

$1.6 x^{2}+7 x+2$	$2.6 x^{2}+10 x+4$	$3.3 x^{2}-20 x+28$

