Extra Practice

Quadratics

Solve each equation by graphing. When necessary, round your answer to the nearest hundredth.

35. $x^2 + 4x - 1 = 0$	36. $4x^2 - 100 = 0$ 39. $2x^2 + 4x = 70$	37. $x^2 = -2x + 1$	
38. $x^2 - 9 = 0$		40. $x^2 - 30 = 10$	
41. $x^2 + 4x = 0$	42. $x^2 + 3x + 2 = 0$	43. $x^2 = 8x = -16$	

- 44. Hal's sister is 5 years older than Hal. The product of their ages is 456. How old are Hal and his sister?
- 45. A toy rocket is fired upward from the ground. The relation between its height *h*, in feet, and the time *t* from launch, in seconds, can be described by the equation $h = -16t^2 + 64t$. How long does the rocket stay more than 48 feet above the ground?
- **46.** The expression $P(x) = 2500x 2x^2$ describes the profit of a company that customizes bulldozers when it customizes *x* bulldozers in a month.
 - a. How many bulldozers per month must the company customize to make the maximum possible profit? What is the maximum profit?
 - **b.** Describe a reasonable domain and range for the function P(x).
 - c. For what number of bulldozers per month is the profit at least \$750,000?

Put each equation in vertex form.

49. $x^2 + 5x + 8 = 4$ **50.** $2x^2 - 5x + 1 = 0$ **51.** $x^2 - 7x = 0$

52.
$$x^2 + 4x + 4 = 0$$
 53. $x^2 - 7 = 0$ **54.** $x^2 + 8x - 17 = 0$

Evaluate the discriminant of each equation. Tell how many real solutions each equation has.

55.
$$x^2 + 4x = 17$$
 56. $2x^2 + x = -1$ **57.** $x^2 - 4x + 5 = 0$

58.
$$2x^2 + 5x = 0$$
 59. $x^2 - 19 = 1$ **60.** $3x^2 = 8x - 4$

61.
$$-2x^2 + 1 = 7x$$
 62. $4x^2 + 4x = -1$ **63.** $x^2 + 16 = 0$

____Class __

Extra Practice

75. (8 - 3i)(6 + 9i)

- 64. The height y of a parabolic arch is given by $y = -\frac{1}{16}x^2 + 40$, where x is the horizontal distance from the center of the base of the arch. All distances are in feet.
 - a. What is the highest point on the arch?
 - **b.** How wide is the arch at the base to the nearest tenth of a foot?
- **65.** An archer's arrow follows a parabolic path. The path of the arrow can be described by the equation $y = -0.005x^2 + 2x + 5$.
 - **a.** Describe the meaning of the *y*-intercept of the graph of the equation.
 - **b.** What is the horizontal distance the arrow travels before it hits the ground? Round your answer to the nearest foot.

Simplify each number by using the imaginary number *i*.

66. √–9	67. √–36	68. √–80
69. √-289	70. √-175	71. √–117
Simplify each expression. 72. $(3 - i) + (5 - 2i)$	73. $(4 + 2i)(1 - i)$	74 . $(4+2i) - (3+5i)$

76. (2+5i) - (-6+i) **77.** (-2-3i)(7-i)