\qquad
\qquad Date \qquad

Extra Practice

Quadratics

Solve each equation by graphing. When necessary, round your answer to the nearest hundredth.
35. $x^{2}+4 x-1=0$
36. $4 x^{2}-100=0$
37. $x^{2}=-2 x+1$
38. $x^{2}-9=0$
39. $2 x^{2}+4 x=70$
40. $x^{2}-30=10$
41. $x^{2}+4 x=0$
42. $x^{2}+3 x+2=0$
43. $x^{2}=8 x=-16$
44. Hal's sister is 5 years older than Hal. The product of their ages is 456 . How old are Hal and his sister?
45. A toy rocket is fired upward from the ground. The relation between its height h, in feet, and the time t from launch, in seconds, can be described by the equation $h=-16 t^{2}+64 t$. How long does the rocket stay more than 48 feet above the ground?
46. The expression $P(x)=2500 x-2 x^{2}$ describes the profit of a company that customizes bulldozers when it customizes x bulldozers in a month.
a. How many bulldozers per month must the company customize to make the maximum possible profit? What is the maximum profit?
b. Describe a reasonable domain and range for the function $P(x)$.
c. For what number of bulldozers per month is the profit at least $\$ 750,000$?

Put each equation in vertex form.
49. $x^{2}+5 x+8=4$
50. $2 x^{2}-5 x+1=0$
51. $x^{2}-7 x=0$
52. $x^{2}+4 x+4=0$
53. $x^{2}-7=0$
54. $x^{2}+8 x-17=0$

Evaluate the discriminant of each equation. Tell how many real solutions each equation has.
55. $x^{2}+4 x=17$
56. $2 x^{2}+x=-1$
57. $x^{2}-4 x+5=0$
58. $2 x^{2}+5 x=0$
59. $x^{2}-19=1$
60. $3 x^{2}=8 x-4$
61. $-2 x^{2}+1=7 x$
62. $4 x^{2}+4 x=-1$
63. $x^{2}+16=0$
\qquad
\qquad Date \qquad

Extra Practice

64. The height y of a parabolic arch is given by $y=-\frac{1}{16} x^{2}+40$, where x is the horizontal distance from the center of the base of the arch. All distances are in feet.
a. What is the highest point on the arch?
b. How wide is the arch at the base to the nearest tenth of a foot?
65. An archer's arrow follows a parabolic path. The path of the arrow can be described by the equation $y=-0.005 x^{2}+2 x+5$.
a. Describe the meaning of the y-intercept of the graph of the equation.
b. What is the horizontal distance the arrow travels before it hits the ground? Round your answer to the nearest foot.

Simplify each number by using the imaginary number i.
66. $\sqrt{-9}$
67. $\sqrt{-36}$
68. $\sqrt{-80}$
69. $\sqrt{-289}$
70. $\sqrt{-175}$
71. $\sqrt{-117}$

Simplify each expression.
72. $(3-i)+(5-2 i)$
73. $(4+2 i)(1-i)$
74. $(4+2 i)-(3+5 i)$
75. $(8-3 i)(6+9 i)$
76. $(2+5 i)-(-6+i)$
77. $(-2-3 i)(7-i)$

