Solve the following equation and check for extraneous solutions

$$\sqrt{3x+7}=x-1$$

Simplify the following expressions

$$(3+4i)(-2-2i)$$
 $(1+2i) - (2+7i)$

Objectives Define a parabola in conic terms using the focus and directrix.

> Use focus and directrix to define a parabola in algegraic terms.

Homework Finish Worksheet

Let's get the quiz out of the way....

Find an equation in standard form of the parabola passing through the points.

1. (2, -20), (-2, -4), (0, -8)	2. (1, -3), (2, 0), (3, 9)
-X=+ 4 x -8	3X2-6X+0
3. (2, -8), (3, -8), (6, 4)	4. (-1, -12), (2, -6), (4, -12)
x2-5x-2	- X2+3x-8

A player hits a tennis ball across the court and records the height of the ball at different times, as shown in the table. **a**. Find a quadratic model for the data. $-0.5x^2 + x + 5.5$

b. Use the model to estimate the height of the ball at 4 seconds. 1.5

c. What is the ball's maximum height?

Time(s)	Height (ft)
0	5.5
1	6.0
2	5.5
3	4.0

- 6. Reasoning Explain why the quadratic model only works up to 4.5 seconds that height measurements made after 4.5 seconds are not valid. (Remember this is a reasonable domain is [2, 4.621]
- 7. The table at the right shows the height of the tides measured at the Santa Monica Municipal Pier in California. Hours are measured from 0.00 at midnight.
 - a. Find a quadratic model for this data using quadratic regression. $-O(4 \times 2 -(4 \times 2 \times 4 + 4))$
 - b. Use the model to predict the lowest tide height. 2.49
 - c. When does the lowest tide occur? 5.17 Gm

Time	Tide Height (ft)
0.33	3.9
3.30	2.7
11.11	4.6
	4

Source: www.tidesandcurrents.noaa.gov

- 8. The table at the right shows in thousands how many people in the U.S. subscribe to a cellular telephone. 597.3×2-1724.8×-109
 a. Find a quadratic model for the data.
 - Let x = the number of years since 1985.
 - b. Use the model to estimate the number of subscribers in 1995. X = 100 C. Describe a reasonable domain and range for
 - c. Describe a reasonable domain and range for this situation.

R[0, 30,000,000)

D[0,100]

Year	U.S Cellular Telephone Subscribership (in thousands)							
1985 🔿	340							
1990 5	5283							
2000/5	109,478							
2004 / 9	182,140							

SOURCE: CTIA Semi-Annual Wireless Industry

1. Jason jumped off of a cliff into the ocean in Acapulco while vacationing with some friends. His height as a function of time could be modeled by the $h(t) = -16t^2 + 16t + 480$ where t is the time in seconds and h is the height in feet.

- a. How long did it take for Jason to reach his maximum height? O. 5 Seconds
- b. What was the highest point that Jason reached? 484 ft.
- c. Jason hit the water after how many seconds? (p

2. If a toy rocket is launched vertically upward from ground level with an initial velocity of 128 feet per second, then its height *h* after *t* seconds is given by the $h(t) = -16t^2 + 128t$ (if air resistance is neglected).

- a. How long will it take for the rocket to return to the ground? 5 seconds
- b. After how many seconds will the rocket be 112 feet above the ground? 1 2 7 seconds
- c. How long will it take the rocket to hit its maximum height? 4
- d. What is the maximum height? 256

3. You and a friend are hiking in the mountains. You want to climb to a ledge that is 20 ft. above you. The height of the grappling hook you throw is given by the function $h(t) = -16t^2 - 32t + 5$.

- a. What is the maximum height of the grappling hook? 5 ff
- b. Can you throw it high enough to reach the ledge? no

4. You are trying to dunk a basketball. You need to jump 2.5 ft. in the air to dunk the ball. The height that your feet are above the ground is given by the function $h(t) = -16t^2 + 12t$.

- a. What is the maximum height your feet will be above the ground? $a_{a} = 5$
- b. Will you be able to dunk the basketball? $\square \bigcirc$

6. A trebuchet launches a projectile on a parabolic arc at a velocity of 35 ft/s. Using the function $h(t) = -16t^2 + 0t + h_0$ determine when the projectile will first reach a height of 80 ft., and how many seconds later will it again be 80 feet.

h(t)=161=,35t won't happen max height is 15-ft.

7. During World War I, mortars were fired from trenches 3 feet down. The mortars had a velocity of 150 ft/s. Using the function $h(t) = -16t^2 + vt + h_0$ determine how long it will take for the mortar shell to strike its target. $h(t) = -16t^2 + vt + h_0$ determine how long it will take for the mortar

Definition: A **parabola** is the collection of all points (x,y) that have the same distance to the focus and directrix.

When we think about vertex form, $a = \frac{1}{4p}$

A little potty math...

The latus rectum of a parabola is a line segment that passes through the focus, is parallel to the directrix and has its endpoints on the parabola.

The length of the latus rectum is |4p| where p is the distance from the vertex to the focus.

Find the directrix of a parabola with a vertex at (3,4) and a focus at 3,1)

1. Draw a picture.

2. Find p.

3. Use what you know.

Focus and Directrix

Identify the vertex, focus and directrix of the parabola $y = -2(x - 3)^2 + 5$

Vertex

Focus

Directrix

Work on the Focus and Directrix work sheet.

Applications

A satellite dish is in the shape of a parabolic surface. The dish is 12 ft in diameter and 2 ft deep. How far from the base should the receiver be placed?

Since the parabola is vertical and has its vertex at (0, 0) its equation must be of the form:

 $x^2 = 4py$

At (6, 2),
$$36 = 4p(2)$$

so $p = 4.5$

thus the focus is at the point (0, 4.5)

The receiver should be placed 4.5 feet above the base of the dish.

The towers of a suspension bridge are 800 ft apart and rise 160 ft above the road. The cable between them has the shape of a parabola, and the cable just touches the road midway between the towers.

What is the height of the cable 100 ft from a tower?

Since the parabola is vertical and has its vertex at (0, 0) its equation must be of the form:

-300 -

— | 10**0**

$$x^{2} = 4py$$

At (400, 160), 160,000 = 4p(160)1000 = 4pp = 250

thus the equation is $x^2 = 1000y$

At (300, h), 90,000 = 1000h h = 90

The cable would be 90 ft long at a point 100 ft from a tower.