Thursday, February 19, 2015

1. Write the quadratic function with the roots x = 1 and x = 2

2. Write the quadratic function with the roots $x = \frac{2}{3}$ and x = 3

3. Write the quadratic function with the roots $x = 2 \pm 3i$

Hint: Look at packet pages 11-14

Objectives Use the graphing calculator to create a quadratic regression model.

Use a quadratic model to predict real world behavior

HomeworkPacket Page 17: 3, 5-8Packet Page 18: all

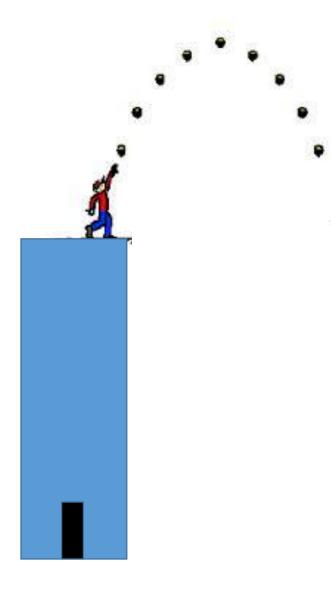
A celebration of Quadratic Functions

Widely used in science, business, and engineering

U-shape can describe the trajectories of water jets in a fountain, a bouncing ball, and angry birds

On a more serious note...

A celebration of Quadratic Functions



- A ball is thrown vertically upward from the top of a building with an initial speed of 80 feet per second.
- The height in feet above the starting point after t seconds is given by the equation

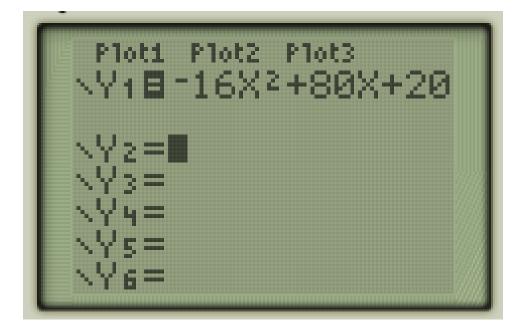
 $h(t)=-16t^2+80t+20$

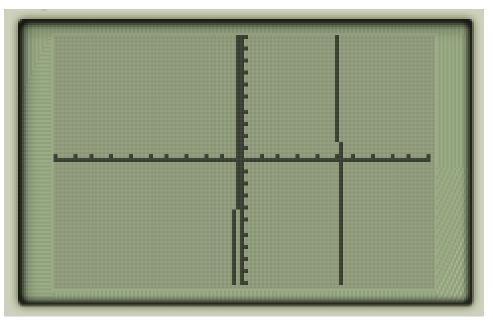
What is the maximum height reached by the ball?

Step 1: Turn on your calculator

Step 2: press [Y=] and enter the equation given.

Step 3: press [GRAPH]



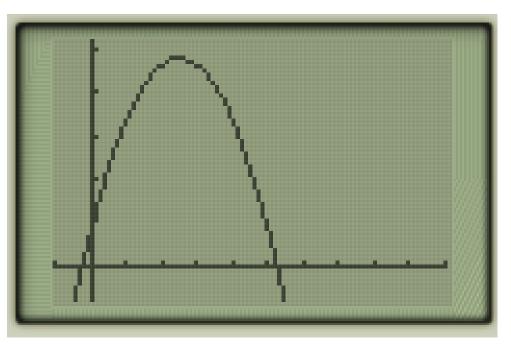


Not helpful!

Step 4: press [WINDOW] and change the settings as indicated here.

Step 5: press [GRAPH]

TNDOL Xmin=1 Xmax=10 Xscl=1 Ymin=-20 Ymax=130 Ysc1=25 Xres=1

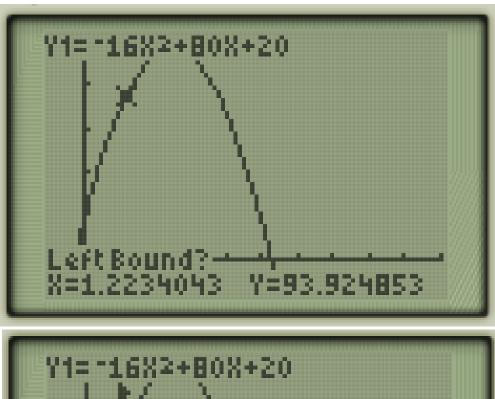


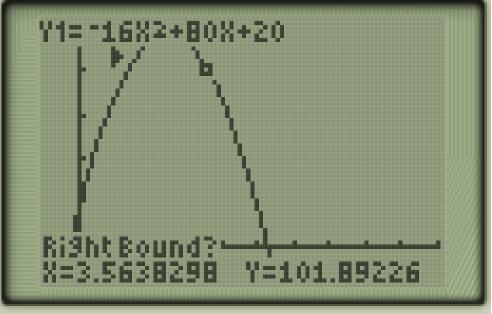
Step 6: press [2nd][TRACE] and select option [4:maximum]

F value zero nimum axımum intersect :dy/dx 7:Jf(x)dx

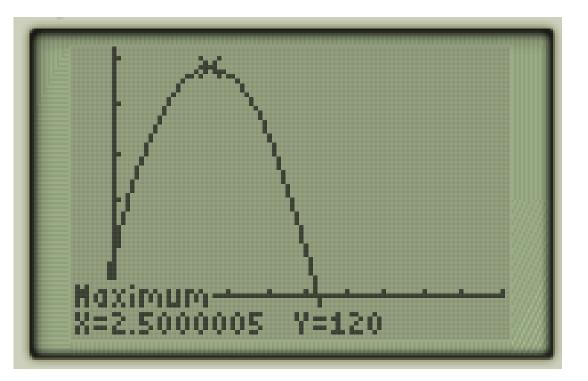
Step 7: Move the cursor using the arrow keys to the left of the maximum point on the graph and press [ENTER].

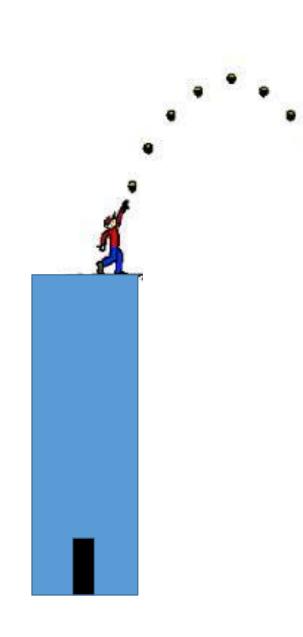
Step 8: Then move the cursor to the right of the maximum point and press [ENTER].





Step 9: Verify your maximum is between the two arrows. Then press [ENTER] again.



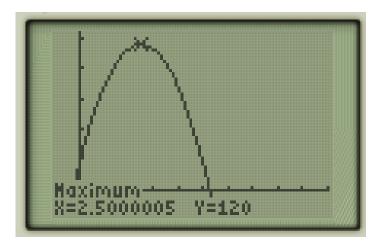


A ball is thrown vertically upward from the top of a building with an initial speed of 80 feet per second.

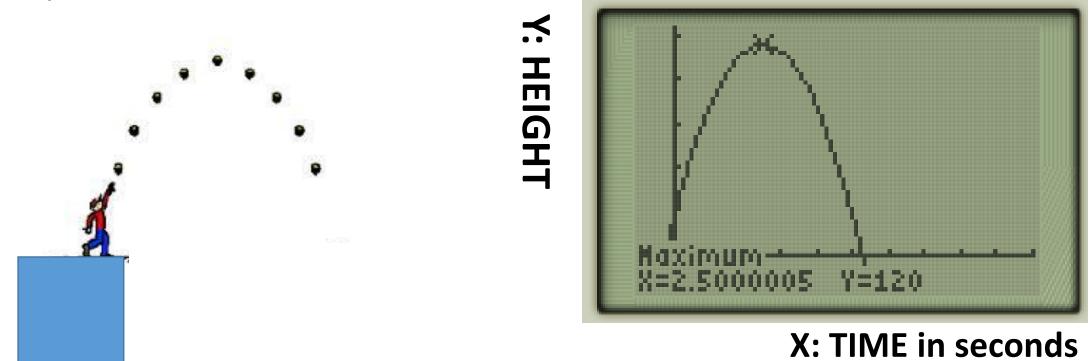
The height in feet above the starting point after t seconds is given by the equation

h(t)=-16t²+80t+20

What is the maximum height reached by the ball?



The **height** in feet above the starting point after **t** seconds is given by the equation $h(t)=-16t^2+80t+20$.



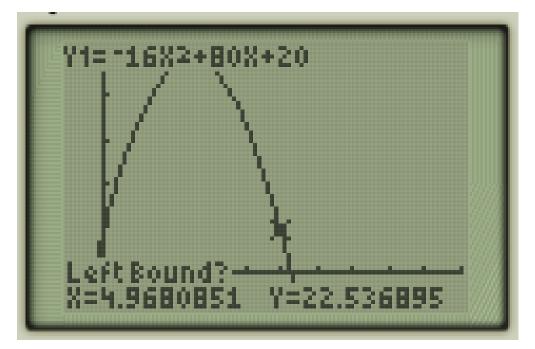
So what else can we tell from this graph?

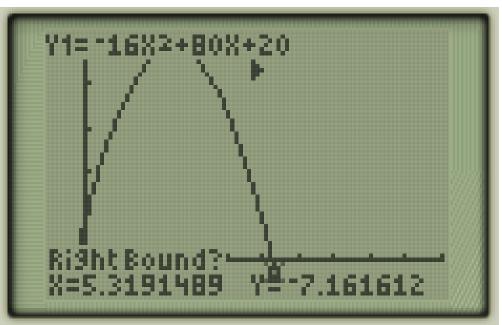
How many seconds will have elapsed when the ball hits the ground?

Press [2nd][TRACE] and select option [2:zero]

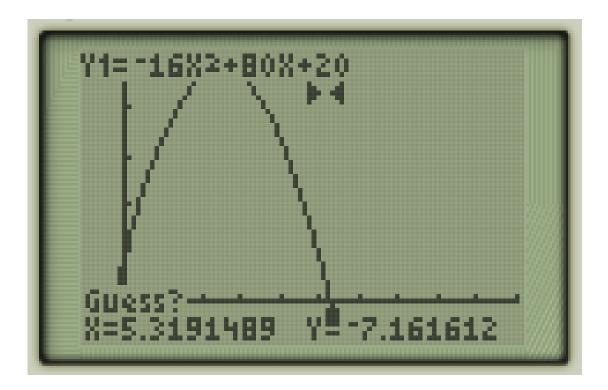
Move the cursor using left/right arrow keys above x-intercept on the graph and press [ENTER].

Then move the cursor below the xintercept and press [ENTER].

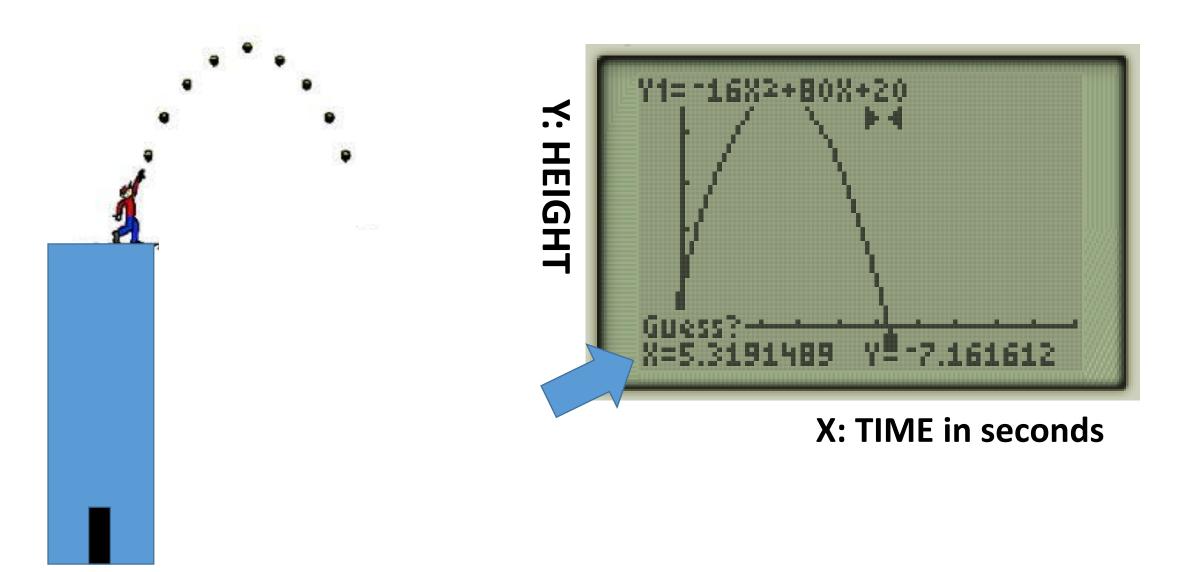




Step 9: Then press [ENTER] again.



How many seconds will have elapsed when the ball hits the ground?



1. How long was the throw?

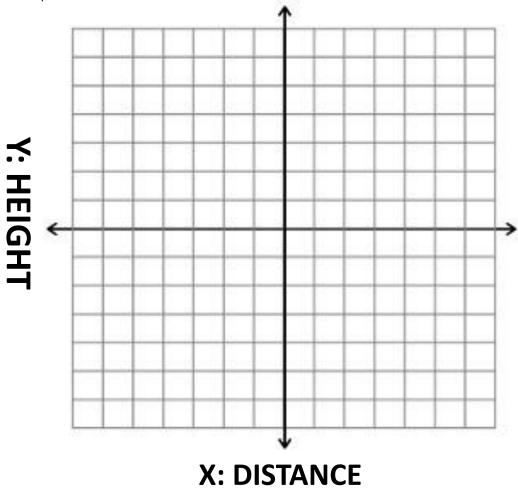
A shot-put throw can be modeled using the equation

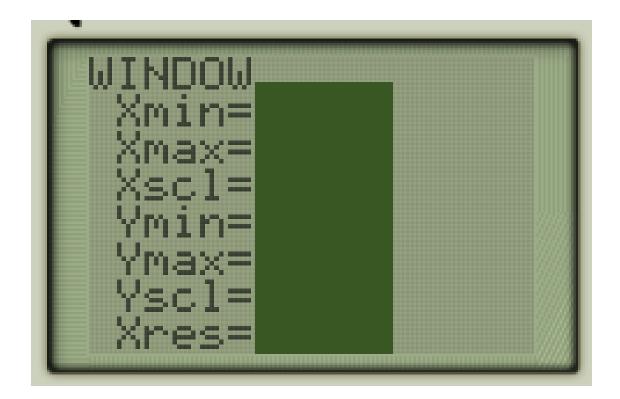
 $h(t) = -0.0241x^2 + x + 5.5$

where **x** is the **distance** traveled in feet and **h(t)** is the **height** in feet.

2. How high did the shot get put?

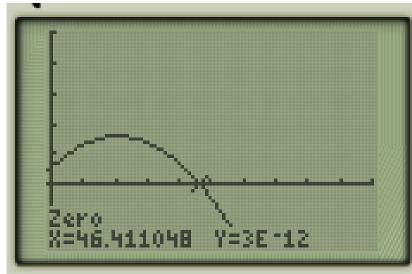
Press [Y=] and enter the function



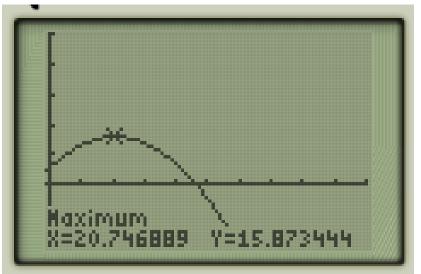


What's a realistic viewing window?

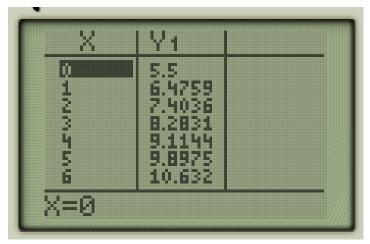
1. How long was the throw?

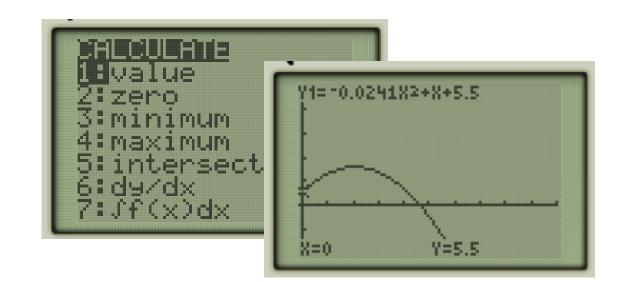


2. How high did the shot get put?

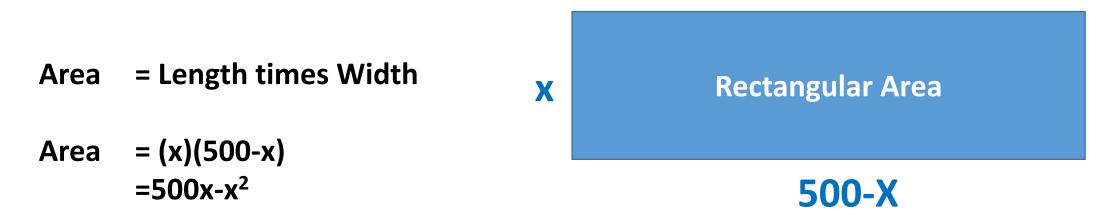


Bonus: How tall is the shot putter?





A farmer has 1000 feet of fencing and a very big field. She can enclose a rectangular area with dimensions **x** feet and **500-X** feet. What is the largest rectangular area she can create?



What are realistic values for x?

A farmer has 1000 feet of fencing and a very big field. She can enclose a rectangular area with dimensions **x** feet and **500-X** feet. What is the largest rectangular area she can create?

Realistic X... 0<x<500 **Rectangular Area** X **Can length or wide be negative?** Zero? **500-X Realistic Y...** = Length times Width Area Pick a number halfway between 0 = (x)(500-x)Area and 500. Plug that into your area $=500x-x^{2}$ function. Use the answer to determine the Y saettings.

Today your calculator is your friend.

We'll use it to create a quadratic regression model instead of having to do it by hand.

Instead of this ->

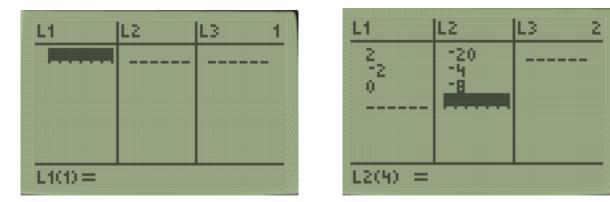
wodening with	Quadratic Functions	
ree non-collinear points, no two actly one quadratic function.	of which are in line vertical	lly, are on the graph of
roblem		
parabola contains the points (0, abola in standard form?	-2), (-1, 5), and (2, 2). What	t is the equation of this
he parabola $y = ax^2 + bx + c$ pas nt must satisfy the equation of t x + c to write a system of equat	he parabola. Substitute the (
First, use the point (0, -2).	$y = ax^2 + bx + c$	Write the standard form.
	$-2 = a(0)^2 + b(0) + c$	Substitute.
	-2 = c	Simplify.
Use the point (-1, 5) next.	$5 = a(-1)^2 + b(-1) + c$	Substitute.
	5 = a - b + c	Simplify.
Finally, use the point (2, 2).	$2 = a(2)^2 + b(2) + c$	Substitute.
cause $c = -2$, the resulting syste a - b 4a + 2b	=7	Simplify. fy the equations above.

The equation of the parabola that contains the given points is $y = 3x^2 - 4x - 2$.

We'll do this....

Look at #1 on 4-3 Practice sheet . First we need to enter the data points.

Press STAT, 1,



Now we generate our quadratic model.

Enter the x values in L1 and the y values in L2

Press STAT, CALC, 5 EDIT DELLE TESTS 1:1-Var Stats 2:2-Var Stats 3:Med-Med 4:LinRe9(ax+b) 6:CubicRe9 6:CubicRe9 74QuartRe9

We have to tell your calculator where the data is. This is where our calculators may be different...

What do you see on your calculator?

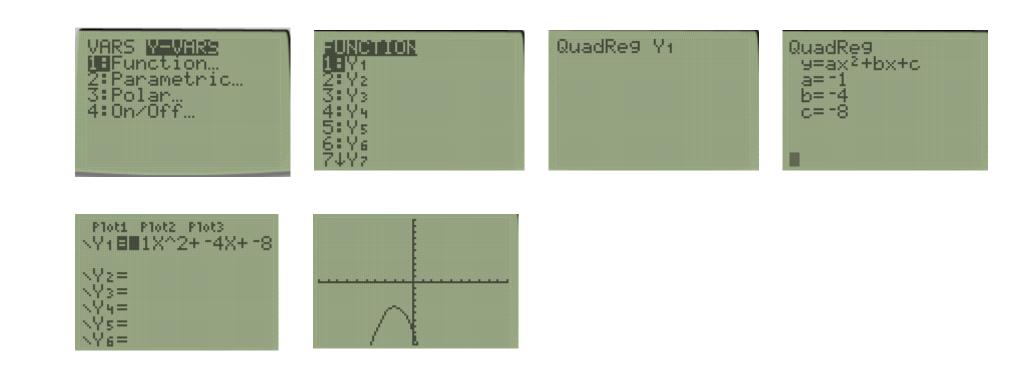
QuadRe9	•

Xlist: L1
Ylist: L2
FreqList:
Store RegEQ
Calculate

OR

Now we tell it where to put the regression equation. We want it in Y_1 .

VARS



Look at your regression model.

Work with a partner to finish the 4-3 Practice sheet.

