1. Identify domain and range for the function $f(x)=-\sqrt{x-2}+4$
2. What transformations change $f(x)=-\sqrt{x-2}+4$ into $g(x)=\sqrt{x+1}-2$.
3. Convert $y=x^{2}-2 x-3$ into vertex form by completing the square.

Objectives Use the graphing calculator to create a quadratic regression model.

Use a quadratic model to predict real world behavior

Homework 4-3 Practice sheet, all. Don't panic, you'll probably finish them in class.

PRACTICE 1 - Find the quadratic equations whose roots are -3 and 6 .

$$
X=-3 \quad X=6 \quad \text { Set each solution equal to } x
$$

$$
x+3 \rightarrow 0 \quad x-6=0 \quad \text { Subtract the constant from both sides to make the equation equal to zero. }
$$

$$
(x+3)(x-6)=0 \quad \text { Create a factor equation. }
$$

$$
x^{2}-6 x+3 x-18=0 \quad \text { Foil the factors }
$$

$$
x^{2}-3 x-18=0 \text { Combine Like Terms. This is our Quadratic Equation. }
$$

More Practice

1. Find the quadratic equations with the roots 20 and 2 .

$$
\begin{aligned}
& (x-20)(x-2)=0 \\
& x^{2}-22 x+40=0
\end{aligned}
$$

2. Find the quadratic equations with the roots -4 and 0 .

$$
\begin{aligned}
& (x+4) x=0 \\
& x^{2}+4 x=0
\end{aligned}
$$

PRACTICE 2- Find the quadratic equations whose solutions are $\frac{5}{3}$ and $-\frac{1}{2}$.

$$
\begin{aligned}
& 5 / 3=X \quad-1 / 25 X \quad \text { set each solution equal to } x \text {. } \\
& 3 \times=5 \quad 2 \times=-1 \text { Clear the fractions by multiplying by the denominators. } \\
& 3 x-5=0 \quad 2 x+1=0 \quad \text { Subtract the constant from both sides to make the equation equal to zero. } \\
& \left(\frac{3 x-5)(2 x+1)}{3}\right. \text { = Create a factor equation. } \\
& \text { (1) } x^{2}+3 x-10 x-3 \leq 0 \text { Foil the factors } \\
& 6 x^{2}-7 x-5=6 \quad \text { Combine Like Terms. This is our Quadratic Equation. }
\end{aligned}
$$

More Practice

1. Find the quadratic equations with the roots 0 and $-\frac{2}{5}$.

$$
\begin{aligned}
& x(x+2 / 5)^{5} \\
& 5 x^{2}+2 x=0
\end{aligned}
$$

2. Find the quadratic equations with the roots 2 and $\frac{2}{9}$.

$$
\begin{aligned}
& x-2=0 \quad 9 x-2=0 \\
& (x-2)(9 x-2)=0 \\
& 9 x^{2}-2 x-18 x+4=0,9 x^{2}-20 x+4=0
\end{aligned}
$$

PRACTICE 3 - Find the quadratic equations whose solutions are $\frac{2+\sqrt{3}}{4}$ and $\frac{2-\sqrt{3}}{4}$.

$$
\begin{array}{ll}
x=\frac{2 \pm \sqrt{3}}{4} & \text { Write as one expression equal to } x . \\
4 x=2 \pm \sqrt{3} & \text { Clear the fractions by multiplying by the denominators. } \\
4 x-25 \pm \sqrt{3} & \text { Isolate the radical term. } \\
(4 x-2)^{2}=3 / 16 x^{2}-16 x+4^{\text {Square both sides and simplify }} \\
16 x^{2}-16 x+1=0 & \begin{array}{l}
\text { Subtract the constant from both sides to make equation equal to zero. } \\
\\
\text { Our solution. }
\end{array}
\end{array}
$$

More Practice - Find the quadratic equations with the following roots.

$$
\begin{gathered}
\text { 1. }-3 \pm \sqrt{2} \quad x=-3 \pm \sqrt{2} \\
(x-3)^{2}=(\pm \sqrt{2})^{2} \\
x^{2}-6 x+9=2 \\
x^{2}-6 x+7=0
\end{gathered}
$$

2. $\pm \sqrt{7} \quad X= \pm \sqrt{7}$

$$
x^{2}=7
$$

$$
x^{2}-7=0
$$

PRACTICE 4 - Find the quadratic equations whose solutions are $\frac{3+5 i}{2}$ and $\frac{3-5 i}{2}$

$$
x=\frac{3 \pm 5 i}{2} \quad \text { Write as one expression equal to } x .
$$

$2 x-3= \pm 5 i \quad$ Isolate the i term.
$(2 x-3)^{2}=85 i{ }^{2} / 4 x^{2}-12 x+4=-25$

$$
2 \text { Subtract the constant from both sides to make equation equal to zero. }
$$

$$
4 x^{2}-12 x+34=0 \quad \begin{aligned}
& \text { Subtract the } c \\
& \text { Our solution. }
\end{aligned}
$$

More Practice - Find the quadratic equations with the following roots.

$$
\begin{aligned}
& \text { 1. } \pm 5 i \sqrt{2} \\
& x= \pm 5 i \sqrt{2} \\
& \left.x^{2}=65\right) i^{2}(2) \\
& x^{2}=-50 \\
& x^{2}+50=0 \\
& 3 . \frac{6 \pm i \sqrt{2}}{8} \\
& x=\frac{6 \pm i \sqrt{2}}{8}
\end{aligned}
$$

$$
2.6 \pm 4 i
$$

$$
x=6 t 4 i
$$

$$
x-6= \pm 4 i
$$

$$
x^{2}-12 x+36=-16
$$

$$
\begin{aligned}
& 8 x=6 \pm i \sqrt{2} \\
& 8 x-6= \pm i \sqrt{2}
\end{aligned} \quad \begin{aligned}
& 64 x^{2}-96 x+36=-2 \\
& 64 x^{2}-96 x+38=0
\end{aligned}
$$

$$
(8 x-6)^{2}=2 i^{2}
$$

We've been finding solutions to quadratic equations
using factoring, graphing and the quadratic formula.

Now we'll work backwards from the solutions and create the original quadratic solution.

Complete Practice Problem 1 and 2.

Write as one expression equal to x.

Isolate the radical term.

Square both sides and simplify.
Subtract the constant from both sides to make the equation equal to zero.
Our solution.
Complete Practice Problem 3.

Complete Practice Problem 4.

Solving Radical Equations

Work on your homework.

Today your calculator is your friend.

We'll use it to create a quadratic regression model instead of having to do it by hand.

\author{

4-3 $\frac{\text { Reteaching }}{\text { Modeding Win Ouatataic funciions }}$
 Three non-collinear points, no two of which are in line vertically, are on the graph of exactly one quadratic function.
 \section*{Instead of this ->}
 \section*{Problem}
 A parabola contains the points $(0,-2),(-1,5)$, and $(2,2)$. What is the equation of this parabola in standard form?
 If the parabola $y=a x^{2}+b x+c$ passes through the point (x, y), the coordinates of the point must satisfy the equation of the parabola. Substitute the (x, y) values into $y=a x^{2}$ $+b x+c$ to write a system of equations.
 | First, use the point $(0,-2)$. | $y=a x^{2}+b x+c$ | Write the standard form. |
| :---: | :---: | :---: |
| | $-2=a(0)^{2}+b(0)+c$ | Substitute. |
| | $-2=c$ | Simplify. |
| Use the point ($-1,5$) next. | $5=a(-1)^{2}+b(-1)+c$ | Substitute. |
| | $5=a-b+c$ | Simplify. |
| Finally, use the point (2,2). | $2=a(2)^{2}+b(2)+c$ | Substitute. |
| | $2=4 a+2 b+c$ | Simplify. |
 [^0]}

Look at the example on 4-3, page 30. First we need to enter the data points.

Press STAT, 1,

Now we generate our quadratic model.

Press STAT, CALC, 5

Enter the x values in L1 and the y values in L2

We have to tell your calculator where the data is. This is where our calculators may be different...

We have to tell your calculator where the data is. This is where our calculators may be different.

Select L1 for x values

Press "comma"

Press ${ }^{\text {nd }}$ STAT (list)
Press $\mathbf{2}^{\text {nd }}$ STAT (list)

Select L2 for y values
Now we tell it where to put the regression equation. We want it in Y_{1}.


```
    y=ax2+bx+c
    j=-16
    b=96
    c=112
```


Work with a partner to finish the 4-3 Practice sheet.

[^0]: The equation of the parabola that contains the given points is $y=3 x^{2}-4 x-2$.

