

1. Find all solutions of $f(x)=2x^3 - 54$.

2. Find all solutions of $f(x)=8x^3 + 125$.

Objectives

Model Real World Situations with Polynomial Models

Make predictions using Polynomial Models

Homework Handout, page 73 1 -8 odd, 9-12 and 15-18

2. $(5 + a)^6$

 $15,625 + 18750a + 9375a^2 + 2500a^3$ $y^4 + 4y^3 + 6y^2 + 4y + 1$ $+ 375a^4 + 30a^5 + a^6$ 4. $(3a + 2)^4$ 5. $(x-3)^5$ $x^5 - 15x^4 + 90x^3 - 270x^2$ $81a^4 + 216a^3 + 216a^2 + 96a + 16$ +405x - 2436. $(b + 1)^8$ 7. $(x + 2)^3$ $b^8 + 8b^7 + 28b^6 + 56b^5 + 70b^4$ $x^{3} + 6x^{2} + 12x + 8$ $+56b^{3}+28b^{2}+8b+1$ Find the specified term of each binomial expansion. 8. second term of $(x - 4)^8$ **9.** third term of $(x + 3)^{12}$ 594x¹⁰ $-32x^{7}$ **10.** fourth term of $(x - 2)^7$ 11. third term of $(x^2 - 2y)^6$ $-280x^4$ $60x^8y^2$ **12.** fifth term of $(3x - 1)^5$ **13.** seventh term of $(x - 4y)^6$ 15x 4096v⁶ **18.** $(2a + b)^7$ 19. $(c - d)^8$ 8; $128a^7 + 448a^6b$ 9: $c^8 - 8c^7d$ 20. $(x + y)^3$ 21. $(3x - y)^5$ $4: x^3 + 3x^2y$ 6; $243x^5 - 405x^4y$ 22. $(x + y^2)^5$ 23. $(4 - 2x)^7$ 6; $x^5 + 5x^4y^2$ 8; 16,384 - 57,344x

> Prentice Hall Foundations Algebra 2 • Teaching Resources Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

3. $(y + 1)^4$

Find the real or imaginary solutions of each equation by factoring.

1.
$$8x^3 - 27 = 0$$

 $(2x - 3)(4x^2 + 6x + 9); \frac{3}{2}, \frac{-3 \pm 3i\sqrt{3}}{4}$
3. $2x^3 + 54 = 0$
 $2(x + 3)(x^2 - 3x + 9); -3, \frac{3 \pm 3i\sqrt{3}}{2}$
5. $4x^3 - 32 = 0$
 $4(x - 2)(x^2 + 2x + 4); 2, -1 \pm i\sqrt{3}$
7. $64x^3 - 1 = 0$
 $(4x - 1)(16x^2 + 4x + 1); \frac{1}{4}, \frac{-1 \pm i\sqrt{3}}{8}$
2. $x^3 + 64 = 0$
 $(x + 4)(x^2 - 4x + 16); -4, 2 \pm 2i\sqrt{3}$
4. $2x^3 - 250 = 0$
 $2(x - 5)(x^2 + 5x + 25); 5, \frac{-5 \pm 5i\sqrt{3}}{2}$
6. $27x^3 + 1 = 0$
 $(3x + 1)(9x^2 - 3x + 1); -\frac{1}{3}, \frac{1 \pm i\sqrt{3}}{6}$
8. $x^3 - 27 = 0$
 $(x - 3)(x^2 + 3x + 9); 3, \frac{-3 \pm 3i\sqrt{3}}{2}$

- 1. (4, -1) and (-3, 13)y = -2x + 7
- **3.** (7, -5) and (-1, 3)y = -x + 2
- 5. (-3, 15), (1, 11), and (0, 6) $y = 2x^2 + 3x + 6$
- 7. (4, -1), (-2, -13), and (1, 2) $y = -x^2 + 4x - 1$

- 2. $(1, -\frac{9}{2})$ and (6, -2) $y = \frac{1}{2}x - 5$ 4. (0, -3), (-2, -7), and (2, 9)
- 4. (0, -3), (-2, -7), and (2, 9) $y = x^2 + 4x - 3$
- 6. (-2, -12), (1, -6), and (2, -24) $y = -5x^2 - 3x + 2$
- 8. (0, 9), (2, 21) (-1, 0), and (3, 36) $y = x^3 - 2x^2 + 6x + 9$

5-8 Practice Page 73-73

9. Let x = the number of years after 1985.

10. Let x = the number of years after 1970.

World Gold

Year	Production (millions of troy ounces)
1985	49.3
1990	70.2
1995	71.8
2000	82.6
l	

SOURCES: The World Almanac and World Gold

 $f(x) = 0.038x^3 - 0.956x^2 + 8.01x + 49.3$

11. Let x = the number of years after 1985.

U.S. Energy

Year	Total Production (×10 ¹⁵ Btu)
1985	64.9
1990	70.8
1995	71.0

Source: Energy Information Administration

 $f(x) = -0.114x^2 + 1.75x + 64.9$

Life Expectancy

Year of Birth	Female (years)
1970	74.7
1980	77.4
1990	78.8
2000	79.7

Source: U.S. Bureau of the Census

 $f(x) = 0.00013x^3 - 0.0105x^2 + 0.3617x + 74.7$

12. Let x = the number of years after 1980.

Social Security Benefits

Year	Monthly Average (dollars)
1980	321.10
1990	550.50
2000	844.60

SOURCE: www.infoplease.com

 $f(x) = 0.3235x^2 + 19.705x + 321.1$

- Estimate world gold production for 2010, 2020, and 2025.
 245.8 troy oz., 787.8 troy oz., 1272.1 troy oz.
- Estimate the life expectancy for women born in 1986, 1992, and 2005.
 78.3 years, 79.0 years, 80.1 years
- 17. Estimate the U.S. energy production for 2002, 2005, and 2010.
 61.7 × 10¹⁵ Btu, 54.3 × 10¹⁵ Btu, 37.4 × 10¹⁵ Btu
- Estimate the average monthly Social Security benefits for 1970, 1996, and 1999.
 \$156.40, \$719.20, \$812.28

Schedule for Monday, October 6th

7:15 – 11:30	Homeroom
	9 th grade: COPS
	10 th grade: ACT Plan
	11 th grade: Mock ACT
	12 th grade: College/Career Planning
11:30-11:36	Transition to 1st block
11:36-1:02	1st block
	12:01-1:02 - A lunch class
	11:30-11:55 - A lunch
	11:36-12:05; 12:34-1:02 - B lunch class
	12:05-12:29 - B lunch
	11:36-12:37 - C lunch class
	12:37-1:02 - C lunch
1:02-1:08	Transition to 2nd block
1:08-2:10	2nd block
2:10-2:15	Announcements

Before we start, we need to make sure you have diagnostics set to on...

2nd 0

ALPHA x⁻¹

Down Arrow until you see DiagnosticOn

Press Enter twice

We've used linear and quadratic regressions before. Today we'll look at other types of modeling. Depending on the type of data a Cubic or Quartic model works better.

Stat Calc

We're working from the handout, page 72.

We have some data about flight arrivals. We need to find a model for the data which can help us make predictions.

Now create a scatter plot of the data.

Now we need to find the model of best fit.

We need to look at the R² values

The closer R² is to 1 the stronger the model.

R2=1

So Quartic it appears the best model for this collection of data.

Let's USE the quartic model to make some predictions

What percentage of flights were on-time in the year 2005?

Remember x represents years since 1990.

74.4%

What percentage of flights were on-time in the year 2012?

Is this realistic? 757%

Not really. Since we only have a small number of data points, we can't get too far outside of the range of data we have.

You may now work with a partner on the handout.

Save yourself some time! Do 9 and 15 together Do 10 and 16 together Do 11 and 17 together Do 12 and 18 together