1. Find all solutions of $f(x)=2 x^{3}-54$.
2. Find all solutions of $f(x)=8 x^{3}+125$.

Objectives

Model Real World Situations with Polynomial Models
Make predictions using Polynomial Models

Homework
Handout, page 731 -8 odd, 9-12 and 15-18

Check your homework

2. $(5+a)^{6}$ $15,625+18750 a+9375 a^{2}+2500 a^{3}$
$+375 a^{4}+30 a^{5}+a^{6}$
$(3 a+2)^{4}$

$$
81 a^{4}+216 a^{3}+216 a^{2}+96 a+16
$$

6. $(b+1)^{8}$ $b^{8}+8 b^{7}+28 b^{6}+56 b^{5}+70 b^{4}$ $+56 b^{3}+28 b^{2}+8 b+1$
7. $(y+1)^{4}$

$$
y^{4}+4 y^{3}+6 y^{2}+4 y+1
$$

5. $(x-3)^{5}$
$x^{5}-15 x^{4}+90 x^{3}-270 x^{2}$ $+405 x-243$
6. $(x+2)^{3}$
$x^{3}+6 x^{2}+12 x+8$

Find the specified term of each binomial expansion.
8. second term of $(x-4)^{8}$ $-32 x^{7}$
9. third term of $(x+3)^{12}$ $594 x^{10}$
10. fourth term of $(x-2)^{7}$ $-280 x^{4}$
12. fifth term of $(3 x-1)^{5}$ 15x
18. $(2 a+b)^{7}$
$8 ; 128 a^{7}+448 a^{6} b$
20. $(x+y)^{3}$ 4; $x^{3}+3 x^{2} y$
22. $\left(x+y^{2}\right)^{5}$ 6; $x^{5}+5 x^{4} y^{2}$
11. third term of $\left(x^{2}-2 y\right)^{6}$ $60 x^{8} y^{2}$
13. seventh term of $(x-4 y)^{6}$ $4096 y^{6}$
19. $(c-d)^{8}$
$9 ; c^{8}-8 c^{7} d$
21. $(3 x-y)^{5}$ 6; $243 x^{5}-405 x^{4} y$
23. $(4-2 x)^{7}$ 8; 16,384-57,344x

Check your homework

Find the real or imaginary solutions of each equation by factoring.

1. $8 x^{3}-27=0$
$(2 x-3)\left(4 x^{2}+6 x+9\right) ; \frac{3}{2}, \frac{-3 \pm 3 i \sqrt{3}}{4}$
2. $2 x^{3}+54=0$
$2(x+3)\left(x^{2}-3 x+9\right) ;-3 ; \frac{3 \pm 3 i \sqrt{3}}{2}$
3. $4 x^{3}-32=0$
$4(x-2)\left(x^{2}+2 x+4\right) ; 2,-1 \pm i \sqrt{3}$
4. $64 x^{3}-1=0$
$(4 x-1)\left(16 x^{2}+4 x+1\right) ; \frac{1}{4} \frac{-1 \pm i \sqrt{3}}{8}$
5. $x^{3}+64=0$ $(x+4)\left(x^{2}-4 x+16\right) ;-4,2 \pm 2 i \sqrt{3}$
6. $2 x^{3}-250=0$ $2(x-5)\left(x^{2}+5 x+25\right) ; 5 ; \frac{-5 \pm 5 i \sqrt{3}}{2}$
7. $27 x^{3}+1=0$
$(3 x+1)\left(9 x^{2}-3 x+1\right) ;-\frac{1}{3}, \frac{1 \pm i \sqrt{3}}{6}$
8. $x^{3}-27=0$
$(x-3)\left(x^{2}+3 x+9\right) ; 3 ; \frac{-3 \pm 3 i \sqrt{3}}{2}$

Check your homework

$$
\begin{aligned}
& \text { 1. }(4,-1) \text { and }(-3,13) \\
& y=-2 x+7
\end{aligned}
$$

3. $(7,-5)$ and $(-1,3)$ $y=-x+2$
4. $(-3,15),(1,11)$, and $(0,6)$
$y=2 x^{2}+3 x+6$
5. $(4,-1),(-2,-13)$, and $(1,2)$
$y=-x^{2}+4 x-1$
6. $\left(1,-\frac{9}{2}\right)$ and $(6,-2)$

$$
y=\frac{1}{2} x-5
$$

4. $(0,-3),(-2,-7)$, and $(2,9)$

$$
y=x^{2}+4 x-3
$$

6. $(-2,-12),(1,-6)$, and $(2,-24)$
$y=-5 x^{2}-3 x+2$
7. $(0,9),(2,21)(-1,0)$, and $(3,36)$
$y=x^{3}-2 x^{2}+6 x+9$

5-8 Practice
9. Let $x=$ the number of years after 1985.

World Gold

Year	Production (millions of troy ounces)
1985	49.3
1990	70.2
1995	71.8
2000	82.6

Sources: The World Almanac and World Gold

$$
f(x)=0.038 x^{3}-0.956 x^{2}+8.01 x+49.3
$$

10. Let $x=$ the number of years after 1970 .

Life Expectancy

Year of Birth	Female (years)
1970	74.7
1980	77.4
1990	78.8
2000	79.7

Sounc: U.S. Bureau of the Census

$$
f(x)=0.00013 x^{3}-0.0105 x^{2}+0.3617 x+74.7
$$

12. Let $x=$ the number of years after 1980 .

Social Security Benefits

Year	Monthly Average (dollars)
1980	321.10
1990	550.50
2000	844.60

[^0]
Check your homework

15. Estimate world gold production for 2010, 2020, and 2025.
245.8 troy oz., 787.8 troy oz., 1272.1 troy oz.
16. Estimate the life expectancy for women born in 1986, 1992, and 2005.
78.3 years, 79.0 years, 80.1 years
17. Estimate the U.S. energy production for 2002,2005 , and 2010. $61.7 \times 10^{15} \mathrm{Btu}, 54.3 \times 10^{15} \mathrm{Btu}, 37.4 \times 10^{15} \mathrm{Btu}$
18. Estimate the average monthly Social Security benefits for 1970, 1996, and 1999. \$156.40, \$719.20, \$812.28

Schedule for Monday, October 6th

7:15-11:30	Homeroom
	$9^{\text {th }}$ grade: COPS
	$10^{\text {th }}$ grade: ACT Plan
	$11^{\text {th }}$ grade: Mock ACT
	$12^{\text {th }}$ grade: College/Career Planning
11:30-11:36	Transition to 1st block
11:36-1:02	1st block
	12:01-1:02-A lunch class
	11:30-11:55-A lunch
	11:36-12:05; 12:34-1:02-B lunch class
	12:05-12:29-B lunch
	11:36-12:37-C lunch class
	12:37-1:02-C lunch
1:02-1:08	Transition to 2nd block
1:08-2:10	2nd block
2:10-2:15	Announcements

Before we start, we need to make sure you have diagnostics set to on...

2nd 0

ALPHA ${ }^{-1}$

Down Arrow until you see DiagnosticOn
Press Enter twice

We've used linear and quadratic regressions before. Today we'll look at other types of modeling. Depending on the type of data a Cubic or Quartic model works better.

Stat Calc

We're working from the handout, page 72.

We have some data about flight arrivals. We need to find a model for the data which can help us make predictions.

First enter your data... STAT, EDIT

Now create a scatter plot of the data.

$2^{\text {nd }} \mathrm{y}=$

Highlight On

ZOOM 9
YOTIS MEMORY उTZom Dut. 4: zDecimal 5: z5=uare 6: Z5t andard 7: ZTr-ig 8: ZInteger eqZomst.at

GRAPH

Now we need to find the model of best fit.

We need to look at the R^{2} values
The closer R^{2} is to 1 the stronger the model.

Linear

Quadratic

Cubic

So Quartic it appears the best model for this collection of data.

Quartic

QuarticReg

Let's use the quartic model to make some predictions

Quartic

What percentage of flights were on-time in the year 2005?

Remember x represents years since 1990.

What percentage of flights were on-time in the year 2012?

Is this realistic? 757\%
Not really. Since we only have a small number of data points, we can't get too far outside of the range of data we have.

You may now work with a partner on the handout.

Save yourself some time!
Do 9 and 15 together
Do 10 and 16 together
Do 11 and 17 together
Do 12 and 18 together

[^0]: SOURCE: www.infoplease.com

 $$
 f(x)=0.3235 x^{2}+19.705 x+321.1
 $$

