1. Draw a diagram showing two triangles are similar using the ASA similarity Theorem
2. Draw a diagram showing two triangles are congruent using the AAS Theorem.
3. If an inscribed angle cuts an arc of 120° on a circle, what is the measure of the inscribed angle?

Objectives

- Use properties external angles to determine the measure of intercepted arcs.
- Use properties of Chords and Secants to determine segment length
- Solve real world problems involving circles.

Homework

Circle Packet, Sections IV, V and VI (4, 5, and 6 ())

ALL Retakes for the Log and Exponents Unit must be completed by Friday November $21^{\text {st }}$.

No exceptions.
You MUST bring your test corrections with you to be eligible for a retake.

CIRCLES Quiz Wednesday
UNIT TEST THIS FRIDAY
New location for Monday afternoon tutoring! MC 1114

Calculate the length of each arc...

Check your homework

Find the area of each shaded sector...
9.

$$
\begin{aligned}
& \frac{80^{\circ}}{80^{\circ}}=\frac{2}{9} \\
& C=\pi 0^{\circ} \\
& c=\pi r^{2} \\
& C=4 \pi \\
& 4 \pi \tau^{*} \frac{2}{9}=\frac{87 T}{9}= \\
& \frac{87 T}{9} \approx 2.79 \mathrm{ft}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{90^{\circ}}{360^{\circ}}=\frac{1}{4} \\
& C=\pi r^{2} \\
& C=\pi 12^{2} \\
& C=144 \pi \\
& 144 \pi \tau^{*} \frac{1}{4}=\frac{144 \pi T}{4}= \\
& \frac{144 \pi T}{4} \approx 113.1 \mathrm{~cm}^{2}
\end{aligned}
$$

12.

9.

$$
\begin{aligned}
2(m \angle D) & =m \widehat{A B} \\
2\left(32^{\circ}\right) & =m \widehat{A B} \\
64^{\circ} & =m \widehat{A B} \\
m \angle C & =m \widehat{A B} \\
x & =64^{\circ}
\end{aligned}
$$

11.

$$
\begin{gathered}
2(m \angle K)=m \overparen{H I} \\
2\left(25^{\circ}\right)=m \overparen{H I} \\
50^{\circ}=m \overparen{H I} \\
m \angle J=1 / 2 m \widehat{D F} \\
x=1 / 2\left(50^{\circ}\right) \\
x=25^{\circ}
\end{gathered}
$$

13.

$$
\begin{gathered}
m \angle E=m \widehat{D F} \\
48^{\circ}=m D F \\
m \angle G=1 / 2 m D F \\
x=1 / 2\left(48^{\circ}\right) \\
x=24^{\circ}
\end{gathered}
$$

12.

$$
\begin{gathered}
m \angle N=m \overparen{L M} \\
162^{\circ}=m \overparen{L M} \\
m \angle G=1 / 2 m \overparen{L M} \\
x=1 / 2\left(162^{\circ}\right) \\
x=81^{\circ}
\end{gathered}
$$

14.

$$
\begin{gathered}
2(m \angle W)=m \overparen{U V} \\
2\left(41^{\circ}\right)=m U V \\
82^{\circ}=m \overparen{U V} \\
m \angle Y=m \overparen{U V} \\
x=82^{\circ}
\end{gathered}
$$

(0)

$$
\begin{gathered}
2(m \angle D)=m \widehat{A C} \\
2\left(81^{\circ}\right)=m \widehat{A C} \\
162^{\circ}=m \widehat{A C} \\
m \angle B=1 / 2 m \widehat{A C} \\
x=1 / 2\left(162^{\circ}\right) \\
x=81^{\circ}
\end{gathered}
$$

First find $m \widehat{\mathrm{KLI}}$.

19. $\mathrm{m} \widehat{\mathrm{RST}}=122^{\circ}$

$\mathrm{mIT}+\mathrm{mKLI}=360^{\circ}$ $m \sqrt{J R}+m \widehat{K L I}=360^{\circ}$ $190^{\circ}+\mathrm{mRLI}=360^{\circ}$ $-190^{\circ} \quad-190^{\circ}$ $m \widehat{K L I}=170^{\circ}$
Then find $\mathrm{m} \angle \mathrm{J}$.
$m \angle J=1 / 2 m$ KL $x=1 / 2\left(170^{\circ}\right)$ $x=85^{\circ}$
$m \widehat{R S T}+m \widehat{T Q R}=360^{\circ}$ $122^{\circ}+m T Q R=360^{\circ}$ $-122^{\circ}-1.22^{\circ}$ $m \widehat{T Q R}=238^{\circ}$
$R m \angle S=1 / 2 m \widehat{T Q R}$
$x=1 / 2\left(238^{\circ}\right)$ $x=119^{\circ}$

274
18. $\mathrm{mPMN}=182^{\circ}$
$m \widehat{P M N}+m \widehat{N O P}=360^{\circ}$ $182^{\circ}+m \widehat{\text { KJL }}=360^{\circ}$ -182° $m \widehat{N O P}=178^{\circ}$
182

20. First find mUYW

To Summarize our adventures from yesterday...

Central
Angle

Inscribed
Angle

Intersecting
Chord Angles

Tangent Angle

Yesterday, all our troubles seemed so far away.
What do the angles pictured below have in common?

Inscribed angle

The angles are formed inside the circle.

Tangent angle

Intersecting Chords

Central Angle

One more thing about tangents and circles.

The angle formed with the tangent line and the radius at the point of tangency is a right angle. ALWAYS.
a)

What's different about the angles pictured here?

Angles are formed out side of the circle.

Angle Formed Outside

$$
=\frac{1}{2} \text { Difference of Intercepted Arcs }
$$

b)

Tangent

Angle Formed Outside $=\frac{1}{2}$ Difference of Intercepted Arcs

$13 x+7$

$$
\begin{aligned}
5 x-10 & =\frac{1}{2}(13 x+7-60) \\
10 x-20 & =13 x-53 \\
33 & =3 x \\
11 & =x
\end{aligned}
$$

Scooby Doo? No you do!

$$
\left.\begin{array}{l}
\text { (12+21x } \\
6 x-12=\frac{1}{2}(-12+21 x-(12 x-24)) \\
6 x-12=\frac{1}{2}(-12+21 x-12 x+24) \\
6 x-12=\frac{1}{2}(9 x+12) \\
12 x-24
\end{array}\right)
$$

$$
\begin{aligned}
6 x+14 & =\frac{1}{2}(6+14 x-58) \\
6 x+14 & =\frac{1}{2}(14 x-52) \\
12 x+28 & =14 x-52 \\
80 & =2 x \\
40 & =x
\end{aligned}
$$

Enough about angles, lets talk chord and segment lengths.

Intersecting Chords

There is a relationship between the segments created when chords intersect within a circle.
$($ Segment Piece $)($ Segment Piece $)=($ Segment Piece $)($ Segment Piece $)$

$$
a b=d c
$$

$($ Segment Piece $)($ Segment Piece $)=($ Segment Piece $)($ Segment Piece $)$

$$
\begin{aligned}
(5)(8) & =4 x \\
40 & =4 x \\
10 & =x
\end{aligned}
$$

$$
\begin{aligned}
(9)(4 x) & =(8)(4 x+2) \\
36 x & =32 x+16 \\
4 x & =16 \\
x & =4
\end{aligned}
$$

Secant-Secant Rule

$($ Whole Secant $)($ External Part $)=($ Whole Secant $)($ External Part $)$

$$
\begin{aligned}
(16)(7) & =(6 x+8 x)(8 x) \\
112 & =112 x \\
x & =1
\end{aligned}
$$

$$
\begin{aligned}
(6)(4) & =(2 x+5+3)(3) \\
24 & =6 x+24 \\
x & =0
\end{aligned}
$$

Secant-Tangent Rule

$($ Whole Secant $)($ External Part $)=(\text { Tangent })^{2}$

$(5+x) x=6^{2}$
$5 x+x^{2}=36$
$x^{2}+5 x-36=0$
$(x-4)(x+8)=0$

$$
x=4, x>8
$$

$$
\begin{gathered}
(27)(12)=(x+8)^{2} \\
324=(x+8)^{2} \\
18=x+8 \\
10=x
\end{gathered}
$$

Practice you nuts and bolts. ()

Intentional typo!

Finish your circles packet and the new handout.

