

1. Draw a diagram showing two triangles are similar using the ASA similarity Theorem 2. Draw a diagram showing two triangles are congruent using the AAS Theorem. 3. If an inscribed angle cuts an arc of 120° on a circle, what is the measure of the inscribed angle?

Objectives

- Use properties external angles to determine the measure of intercepted arcs.
- Use properties of Chords and Secants to determine segment length
- Solve real world problems involving circles.

Homework

Circle Packet, Sections IV, V and VI (4, 5, and 6 ^(c))

ALL <u>Retakes</u> for the Log and Exponents Unit must be completed by Friday November 21st. <u>No exceptions</u>.

0

You <u>MUST</u> bring your test corrections with you to be eligible for a retake.

CIRCLES Quiz Wednesday

UNIT TEST THIS FRIDAY

New location for Monday afternoon tutoring! MC 1114

Calculate the length of each arc...

Check your homework

0

 \bigcirc

2.

 \bigcirc

Yesterday, all our troubles seemed so far away. What do the angles pictured below have in common? The angles are formed inside the circle. в 0. D Č 100° 80° Inscribed Central angle Tangent Intersecting Angle angle Chords

One more thing about tangents and circles.

0

The angle formed with the tangent line and the radius at the point of tangency is a right angle. ALWAYS.

What's different about the angles pictured here?

Angles are formed out side of the circle.

0

Angle Formed Outside = $\frac{1}{2}$ Difference of Intercepted Arcs

al

Angle Formed Outside = $\frac{1}{2}$ Difference of Intercepted Arcs

 $\angle G = 59$

13x + 7

0

0

Scooby Doo? No you do!

0

Enough about angles, lets talk chord and segment lengths.

0

Intersecting Chords

There is a relationship between the segments created when chords intersect within a circle.

(Segment Piece)(Segment Piece)=(Segment Piece)(Segment Piece)

ab=dc

(Segment Piece)(Segment Piece)=(Segment Piece)(Segment Piece)

0

0

(9)(4x) = (8)(4x + 2) 36x = 32x + 16 4x = 16x = 4

Secant-Secant Rule

(Whole Secant)(External Part)=(Whole Secant)(External Part)

0

0

(16)(7) = (6x + 8x)(8x)112 = 112xx = 1

(6)(4) = (2x + 5 + 3)(3)24 = 6x + 24x = 0

Secant-Tangent Rule

(Whole Secant)(External Part)=(Tangent)²

0

0

 $(27)(12) = (x + 8)^{2}$ $324 = (x + 8)^{2}$ 18 = x + 810 = x

0

Practice you nuts and bolts. ^(C) Intentional typo!

Finish your circles packet and the new handout.