WARM UP

1. Solve the equation $\log _{\sqrt{2}} 2=x$
2. Solve the equation $\ln x+\ln 5=3$
3. Find the inverse of the function $f(x)=7^{2 x+3}$
4. Find the inverse of the function $f(x)=7^{2 x}+3$

Objectives

- Review Trigonometry Concepts

Homework

- Released test questions packet
- Section I: 10, 15, 16, 24
- Section II: none
- Section III: 1, 7, 10
- Any unfinished classwork problems

Schedule this week

Monday	- Quadratics and Polynomials
Tuesday	- Logs/Exponents and Statistics
Wednesday	- Rational Functions
Thursday	- Geometry
\Rightarrow Friday	- Trigonometry

After School Blitz sessions this week

Monday	Logarithms	Davis Schmutz	$2: 30-3: 30$	Complete Logarithms assignment Add 7 points to Logarithms Unit Test
Tuesday	Statistics	Dixon Davis	$2: 30-3: 30$	Complete Statistics assignment Add 7 points to Statistics Unit Test
Wednesday	Rational Expressions	Dixon Schmutz	$2: 30-3: 30$	Replace lowest quiz grade with 100
Thursday	Geometry	Dixon Schmutz Davis	$2: 30-3: 30$	Complete Geometry assignment Add points to Geometry Unit Test
Friday	Trig with the Unit Circle	Dixon Schmutz Davis	$2: 30-3: 30$	Complete Trigonometry assignment Add 7 points to Trigonometry Unit Test

$$
f(x)=a \sin b(x-h)+k
$$

$$
f(x)=a \cos b(x-h)+k
$$

Amplitude: a	Period: $\frac{2 \pi}{b}$
Phase Shift: h	Mid Line: $y=K$

$$
\begin{array}{lll}
\text { Basic Identities } & \\
\sin =\frac{0}{n}=y & \cos =\frac{a}{h}=x & \tan =\frac{0}{a}=\frac{y}{x}=\frac{\sin }{\cos } \\
\csc =\frac{1}{\sin } & \sec =\frac{1}{\cos } & \cot =\frac{1}{\tan }=\frac{x}{y}=\frac{\cos }{\sin }
\end{array}
$$

Make sure the Trigonometry pages of your formula book have the following items completed.

$$
\begin{aligned}
& \text { Pythagorean Identities } \\
& \sin ^{2}+\cos ^{2}=1 \quad \tan ^{2}+1=\sec ^{2} \quad 1+\cot ^{2}=\csc ^{2}
\end{aligned}
$$

Convert
Degrees to Radians:

Convert Radians to Degrees: multiply by $\frac{180}{1 \pi}$

45-45-90 Triangle

SPECIAL RIGHT TRIANGLES

Make sure the Trigonometry pages of your formula book have the following items completed.

