Sunday, February 1, 2015

For the following equations, identify the parent function and any transformations.

1. $f(x)=x^{3}+3 \quad$ Cubic, U3
2. $f(x)=|x+3|-7$
Absolute Value, L3 D7
3. $f(x)=\sqrt{x-2} \quad$ Radical, R2
4. $f(x)=(x-2)^{2}+8$ Quadratic, R2 U8
5. Write the equation of the function pictured in the graph to the right.

$$
f(x)=|x-2|-4
$$

Identify Compression and Stretch transformations from a function equation.

Write a function equation from a description of transformations.

Apply transformations to functions that have already been transformed.

Determine the transformations that change one function to another function.

Vertical Transformations

Function Notation	Description of Transformation
$\mathrm{g}(x)=f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative

Horizontal Translations

Function Notation	Description of Transformation
$g(x)=f(x \pm c)$	Horizontal shift left C units if C is positive.
	Horizontal shift right C units if C is negative

Flips

Function Notation	Description of Transformation
$\mathrm{g}(x)=-f(x)$	Reflected over the x -axis

Stretching and Compressing a function.

Parent Function
Quadratic $f(x)=x^{2}$

Transformed Function
Vertical stretch

Transformed Function
Vertical compression

Stretching and Compressing a function.

Parent Function
Quadratic $f(x)=x^{3}$

Transformed Function
Vertical stretch

Transformed Function
Vertical compression

So how do we represent these transformations algebraically?

Vertical Stretches and Compressions

When functions are multiplied by a constant outside of the $f(x)$ part, you stretch and compress the function.

Function Notation

Description of Transformation

$$
f(x)=c f(x)
$$

$$
\text { Vertical Stretch if } \boldsymbol{c}>\mathbf{1}
$$

Vertical Compression if $\mathbf{0}<\boldsymbol{c}<\mathbf{1}$

How do we interpret this function notation?

$$
\begin{aligned}
& \text { Let } f(x)=x^{2} \text { and } c=3 \text { then } g(x)=3 x^{3} \\
& \text { Let } f(x)=\sqrt{x} \text { and } c=\frac{1}{4} \text { then } g(x)=\frac{1}{4} \sqrt{x} \\
& \text { Let } f(x)=|x| \text { and } c=7 \text { then } g(x)=7|x|
\end{aligned}
$$

Let's play "What's going to happen to the parent function?"

$$
f(x)=3 x^{2}
$$

X	X^{2}	$3 \mathbf{X}^{2}$
3	9	27
2	4	12
1	1	3
0	0	0
-1	1	3
-2	4	12
-3	9	27

We say $f(x)$ has been stretched by a factor of 3 .

Let's play "What's going to happen to the parent function?"

$\boldsymbol{f}(\boldsymbol{x})=\mathbf{4} \sqrt{\boldsymbol{x}}$		
X	$\sqrt{\boldsymbol{x}}$	$4 \sqrt{\boldsymbol{x}}$
9	3	12
4	2	8
1	1	4
0	0	0

We say $f(x)$ has been stretched by a factor of 4 .

Let's play "What's going to happen to the parent function?"

$$
f(x)=\frac{1}{3} x^{3}
$$

We say $f(x)$ has been compressed by a factor of $\frac{1}{3}$.

$$
\begin{array}{ll}
y=3|x|+1 & \text { Absolute Value } \\
y=\frac{1}{2}|x+7| & \text { Absolute Value } \\
y=-5 \sqrt{x-7} & \text { Radical - Square Root } \\
y=-x^{3}-6 & \text { Cubic } \\
y=2(x-8)^{2}-6 & \text { Quadratic } \\
y=0.5 \sqrt{x+5}+42 & \text { Radical }
\end{array}
$$

Parent Function

Transformations

Stretch factor 3, Up 1

Compression factor $\frac{1}{2}$ Left 7

Flip, Stretch factor 5 Right 7

Flip, Down 6
Stretch factor 2, Right 8, Down 6

Compression Factor 0.5 Left 5, Up 42

Shifts of Shifts

This is when we take a function that has already had transformations applied to it and then move it around even more!

For example, let's start with the function $f(x)=x^{2}+5$. What if we want to move it 6 units down?

What would be the equation of that graph?

Where is the new vertex?

Shifts of Shifts

$f(x)=x^{2}+5$. What if we want to move it 3 units left?

Where is the new vertex?

What would be the equation of that graph?

Shifts of Shifts

$f(x)=x^{2}+5$.
What if we want to move it 1 unit right and one unit up?

Where is the new vertex?

What would be the equation of that graph?

I spy functions!

Did we meet our objectives?

