Sunday, February 1, 2015

For the following equations, identify the parent function and any transformations.

1.
$$f(x) = x^3 + 3$$
 Cubic, U3 3. $f(x) = |x + 3| - 7$ Absolute Value, L3 D7

2.
$$f(x) = \sqrt{x-2}$$
 Radical, R2

4.
$$f(x) = (x - 2)^2 + 8$$
 Quadratic, R2 U8

5. Write the equation of the function pictured in the graph to the right.

f(x) = |x - 2| - 4

Objectives for today

Identify Compression and Stretch transformations from a function equation.

Write a function equation from a description of transformations.

Apply transformations to functions that have already been transformed.

Determine the transformations that change one function to another function.

Vertical Transformations

Function Notation	Description of Transformation
$g(x) = f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative

Horizontal Translations

Function Notation	Description of Transformation
$g(x) = f(x \pm c)$	Horizontal shift left C units if C is positive.
	Horizontal shift right C units if C is negative

Flips

Function Notation	Description of Transformation
g(x) = -f(x)	Reflected over the x-axis

Stretching and Compressing a function.

Parent Function Quadratic f(x)=x²

Transformed Function

Vertical stretch

Transformed Function

Vertical compression

Stretching and Compressing a function.

Parent Function Quadratic f(x)=x³

Transformed Function Vertical stretch

Transformed Function

Vertical compression

So how do we represent these transformations algebraically?

Vertical Stretches and Compressions

When functions are multiplied by a constant **outside** of the f(x) part, you stretch and compress the function.

Function Notation	Description of Transformation	
f(x) = cf(x)	Vertical Stretch if $c>1$	
	Vertical Compression if $0 < c < 1$	

How do we interpret this function notation?

Let
$$f(x) = x^2$$
 and $c = 3$ then $g(x) = 3x^3$

Let
$$f(x) = \sqrt{x}$$
 and $c = \frac{1}{4}$ then $g(x) = \frac{1}{4}\sqrt{x}$

Let
$$f(x) = |x|$$
 and $c = 7$ then $g(x) = 7|x|$

Let's play "What's going to happen to the parent function?"

$$f(x) = 3x^2$$

X	X ²	3X ²
3	9	27
2	4	12
1	1	3
0	0	0
-1	1	3
-2	4	12
-3	9	27

We say f(x) has been stretched by a factor of **3**.

Let's play "What's going to happen to the parent function?"

$$f(x) = 4\sqrt{x}$$

We say f(x) has been stretched by a factor of 4.

Let's play "What's going to happen to the parent function?"

Transformations

We say f(x) has been compressed by a factor of $\frac{1}{3}$.

Parent Function Transformations y = 3|x| + 1Stretch factor 3, Absolute Value Up 1 $y = \frac{1}{2}|x + 7|$ Compression factor $\frac{1}{2}$ **Absolute Value** Left 7 $y = -5\sqrt{x-7}$ Flip, Stretch factor 5 Radical – Square Root Right 7 $y = -x^3 - 6$ Cubic Flip, Down 6 $y = 2(x - 8)^2 - 6$ Quadratic Stretch factor 2, Right 8, Down 6 $v = 0.5\sqrt{x+5} + 42$ Radical **Compression Factor 0.5** Left 5, Up 42

Shifts of Shifts

This is when we take a function that has already had transformations applied to it and then move it around even more!

For example, let's start with the function $f(x) = x^2 + 5$. What if we want to move it 6 units down?

What would be the equation of that graph?

Where is the new vertex?

Shifts of Shifts

 $f(x) = x^2 + 5$. What if we want to move it 3 units left?

Where is the new vertex?

What would be the equation of that graph?

Shifts of Shifts

 $f(x) = x^2 + 5$. What if we want to move it 1 unit right and one unit up?

Where is the new vertex?

What would be the equation of that graph?

Did we meet our objectives?

Complete the exit ticket and bring it to me to check.