Warm-up

1. Convert to the opposite form: $x^{2}=144$
2. Convert to the opposite form: $\log _{7} x=2$
3. Condense the statement

$$
\log 3 x+\log y-2 \log z-\log p
$$

4. Expand $\log _{3}\left(\frac{x y}{z}\right)$

Warm-up

1. Find the roots of $2 x^{4}+3 x^{3}-21 x^{2}+2 x+24$
2. Is $(x+6)$ factor of $f(x)=2 x^{4}-5 x^{2}+12$? How do you know?
3. Evaluate $\log _{3} 16$

Objectives

Use properties of logarithms and exponential functions to solve equations.

Homework
WBP 203: 1-31 odd
33-53, odd and 54

Homework Review...

Write each expression as a single logarithm.

1. $\log _{5} 4+\log _{5} 3$
2. $5 \log _{7} x-2 \log _{7} x$ $\log _{7} x^{3}$
3. $2 \log x-3 \log y$ $\log \frac{x^{2}}{y^{3}}$
4. $5 \log 2-2 \log 2$ $\log 8$
5. $(\log 3-\log 4)-\log 2$ $\log \frac{3}{8}$
6. $\log 2+\log 4-\log 7$ $\log \frac{8}{7}$
7. $\frac{1}{2} \log x+\frac{1}{3} \log y-2 \log z$ $\log \frac{x^{\frac{1}{2}} y^{\frac{1}{2}}}{z^{2}}$
8. $\log _{6} 25-\log _{6} 5$ $\log _{6} 5$
9. $\log _{4} 60-\log _{4} 4+\log _{4} x$ $\log _{4} 15 x$
10. $\frac{1}{2} \log r+\frac{1}{3} \log s-\frac{1}{4} \log t$ $\log \frac{r^{1}{ }^{1}{ }^{1}}{t}$
11. $\frac{1}{3} \log 3 x+\frac{2}{3} \log 3 x$ $\log 3 x$
12. $5 \log x+3 \log x^{2}$ $\boldsymbol{\operatorname { l o g }} x^{11}$
13. $\log _{3} 2 x-5 \log _{3} y$ $\log _{3} \frac{2 x}{y^{5}}$
14. $3\left(4 \log t^{2}\right)$
$\log t^{24}$
15. $\log _{2} 4+\log _{2} 2-\log _{2} 8$ $\log _{2} 1$
16. $\log 7-\log 3+\log 6$ $\log 14$
17. $\log _{3} 4 x+2 \log _{3} 5 y$ $\log _{3} 100 x y^{2}$
18. $2 \log 4+\log 2+\log 2$ $\log 64$
19. $\log _{6} 3-\log _{6} 6$ $\log _{6} \frac{1}{2}$
20. $\frac{1}{3}\left(\log _{2} x-\log _{2} y\right) \log _{2} \frac{x^{1}}{y!}$
21. $\log _{5} y-4\left(\log _{5} r+2 \log _{5} t\right)$

Homework Review...

Expand each logarithm. Simplify if possible.
22. $\log x y z$

$$
\log x+\log y+\log z
$$

25. $\log 7(3 x-2)^{2}$

$$
\log 7+2 \log (3 x-2)
$$

23. $\log _{2} \frac{x}{y z}$
$\log _{2} x-\log _{2} y-\log _{2} z$
24. $\log \sqrt{\frac{2 r s t}{5 w}} \frac{1}{2} \log 2+\frac{1}{2} \log r+27 . \log \frac{5 x}{4 y}$

$$
\frac{1}{2} \log s+\frac{1}{2} \log t-\frac{1}{2} \log 5-\frac{1}{2} \log w \quad \log 5+\log x-\log 4-\log y
$$

28. $\log _{5} 5 x^{-5} \log _{5} 5-5 \log _{5} x, 29 . \log \frac{2 x^{2} y}{3 k^{3}} \log 2+2 \log x+30 . \log _{4}(3 x y z)^{2} 2 \log _{4} 3+$

$$
\text { or } 1-5 \log _{5} x \quad \log y-\log 3-3 \log k
$$

Use the Change of Base Formula to evaluate each expression. Round your answer to the nearest thousandth.
31. $\log _{4} 322.5$
32. $\log _{3} 51.465$
33. $\log _{2} 153.907$
34. $\log _{6} 171.581$
35. $\log _{6} 10 \quad 1.285$
36. $\log _{5} 61.113$
37. $\log _{8} 10$
38. $\log _{9} 111.091$

What does an exponential function look like?

An example: $f(x)=2^{x-2}+4$
So basically any function with a variable in the exponent.

What does a logarithmic function look like?
An example: $g(x)=3 \log (7 x-1)-1$
So basically any function with a log in it.

So how do we solve an exponential equation?
Solve the following equation for x .

$$
8^{2 x}=32 \quad \text { One method... }
$$

$\log _{8} 32=2 x \quad$ Rewrite in log form
$5 / 3=2 x \quad$ Solve the right side on your calculator
$5 / 6=x$
Solve the equation using your vast algebra skills

Solve the following equation.

$$
\begin{aligned}
36^{-2 x+1} & =216 \\
\log \left(36^{-2 x+1}\right) & =\log (216) \\
(-2 x+1) \log (36) & =\log (216) \\
-2 x+1 & =\frac{\log (216)}{\log (36)} \\
-2 x+1 & =1.5 \\
x & =-.25
\end{aligned}
$$

Another method...

Take the log of both sides
Use the properties of logs to move exponent.

Divide both sides by $\log (36)$.

Evaluate the right side on your calculator
Use your algebra skills to solve for x .
3.) $2 x \log (9)=\log (27)$

$$
\begin{aligned}
2 x & =\frac{\log (27)}{\log (9)} \\
x & =0.75
\end{aligned}
$$

4.) $(2 n+1) \log (25)=\log (625)$

$$
\begin{aligned}
2 x+1 & =\frac{\log (625)}{\log (25)} \\
x & =0.5
\end{aligned}
$$

3.) $9^{2 x}=27$
4.) $25^{2 n+1}=625$

What if we start with a log equation?

$$
\begin{array}{rlr}
\log 4 x & =-1 \\
10^{-1} & =4 x \quad \text { Not a problem, put in exponential form } \\
\frac{1}{10} & =4 x \quad \text { Solve the equation using your vast alge } \\
0.1 & =4 x \\
0.025 & =x
\end{array}
$$

Solve the following equation.

Yikes the variable in the log is nasty!

$$
\begin{aligned}
\log (2 x+5) & =4 & & \text { Not a problem, follow th } \\
10^{4} & =2 x+5 & & \text { Put in exponential form } \\
\frac{10^{4}-5}{2} & =x & & \text { Use your algebra skills! } \\
4997.5 & =x & &
\end{aligned}
$$

$$
\text { 34.) } \begin{aligned}
10^{2} & =3 x \\
\frac{100}{3} & =x \\
33 \frac{1}{3} & =x
\end{aligned}
$$

42.) $10^{2}=2 x+5$
$\frac{100-5}{2}=x$
$47.5=x$

What about something like this? What properties of logs could you use to solve this equation?

$$
\begin{array}{rlrl}
\log x-\log 4 & =3 & \\
\log \left(\frac{x}{4}\right) & =3 & & \text { Combine into single log statement on the left side. } \\
10^{3} & =\frac{x}{4} & & \text { Rewrite in exponential form. } \\
4000 & =x & & \text { Solve for } x .
\end{array}
$$

52.) $\log x(x+21)=2$

$$
\begin{aligned}
x(x+21) & =10^{2} \\
x^{2}+21 x-100 & =0 \\
(x+25)(x-4) & =0 \\
x=-25, \quad x & =4
\end{aligned}
$$

Remember you can't take the log of a negative number so $x=4$ is the only valid solution.

55. Suppose you deposit $\$ 2500$ in a savings account that pays you 5% interest per year.
a. How many years will it take you to double your money?

$$
\begin{aligned}
& A(t)=2,500(1+.05)^{t} \\
& A(t)=2,500(1.05)^{t}
\end{aligned}
$$

$5,000=2,500(1.05)^{t}$
This is the equation we need to solve.

$$
2=(1.05)^{t}
$$

$$
\log 2=\log 1.05^{t}
$$

$$
\log 2=t \log 1.05
$$

$$
\frac{\log 2}{\log 1.05}=t
$$

$$
14.21=t
$$

55. Suppose you deposit $\$ 2500$ in a savings account that pays you 5% interest per year. YouDO
b. How many years will it take for your account to reach $\$ 8,000$.

$$
8,000=2,500(1.05)^{t}
$$

What equation do we need to solve?

$$
\begin{aligned}
3.2 & =(1.05)^{t} \\
\log 3.2 & =\log 1.05^{t} \\
\log 3.2 & =t \log 1.05 \\
\frac{\log 3.2}{\log 1.05} & =t \\
23.89 & =t
\end{aligned}
$$

Complete page 205 in your workbook. 1-6

This will be a classwork grade. You may use your notes.

Then you can work on your homework.

