\qquad
\qquad Date \qquad

5-7

Practice

Expand each binomial.

1. $(x+4)^{3}$

To start, identify the third row of
Pascal's Triangle.
1331
2. $(5+a)^{6}$
3. $(y+1)^{4}$
4. $(3 a+2)^{4}$
5. $(x-3)^{5}$
6. $(b+1)^{8}$
7. $(x+2)^{3}$

Find the specified term of each binomial expansion.
8. second term of $(x-4)^{8}$
9. third term of $(x+3)^{12}$
10. fourth term of $(x-2)^{7}$
11. third term of $\left(x^{2}-2 y\right)^{6}$
12. fifth term of $(3 x-1)^{5}$
13. seventh term of $(x-4 y)^{6}$
14. third term of $\left(x^{2}+y^{2}\right)^{8}$
15. second term of $(2+x)^{4}$
16. The term $56 a^{5} b^{3}$ appears in the expansion of $(a+b)^{n}$. What is n ?
17. The coefficient of the second term in the expansion of $(c+d)^{n}$ is 6 . Find the value of n, and write the complete term.

State the number of terms in each expansion and give the first two terms.
18. $(2 a+b)^{7}$
19. $(c-d)^{8}$
20. $(x+y)^{3}$
21. $(3 x-y)^{5}$
22. $\left(x+y^{2}\right)^{5}$
23. $(4-2 x)^{7}$

Pascal's Triangle

Binomial Theorem

For every positive integer n,

$$
(a+b)^{n}=P_{0} a^{n}+P_{1} a^{n-1} b+P_{2} a^{n-2} b^{2}+\cdots+P_{n-1} a b^{n-1}+P_{n} b^{n}
$$

where $P_{0}, P_{1}, \ldots, P_{n}$ are the numbers in the nth row of Pascal's Triangle.

What is the expansion of $(a+b)^{6}$? Use Pascal's Triangle.
The exponents for a begin with 6 and decrease to 0 .

The exponents for b begin with 0 and increase to 6 . -

$$
(a+b)^{6}=a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6}
$$

