WARM UP

Find the value of x that makes the lines u and v parallel.

3.
$\frac{\mathrm{Gl}}{\mathrm{JL}}=\frac{\mathrm{IH}}{\mathrm{LK}}$ What additional information is necessary to show $\Delta \mathrm{GHI} \sim \Delta \mathrm{JKL}$ by SAS?

Objectives

- Use properties of circles to derive the formula for sector area.
- Determine arc length and arc measure for given central and inscribed angle measures
- Determine angle measures using the properties of interior angles.

Homework

Circle Packet, Sections I, II and III all problems

ALL Make Up Tests for the Log and Exponents Unit must be completed by Monday November $17^{\text {th }}$. No exceptions.

ALL Retakes for the Log and Exponents Unit must be completed by Friday November $21^{\text {st }}$.

No exceptions.

You MUST bring your test corrections with you to be eligible for a retake.

Homework review: Sections III, IV and V

Fill in the missing information in each proof.
4. Given: $\overline{\mathrm{GH}} \cong \overline{\mathrm{KL}}, \angle \mathrm{G} \cong \angle \mathrm{K}$, and $\overline{\mathrm{GI}} \cong \overline{\mathrm{KJ}}$

Prove: $\overline{\mathrm{HI}} \cong \overline{\mathrm{LJ}}$

Statements	Reasons
1. $\overline{\mathrm{GH}} \cong \overline{\mathrm{KL}}$	1. Given
2. $\angle G \cong \angle \mathrm{~K}$	2. Given
3. $\overline{\mathrm{GI}} \cong \overline{\mathrm{KI}}$	3. Given
4. $\triangle G \overline{G H I} \cong \triangle K L J$	4. SAS
5. $\overline{\mathrm{HI} \cong \overline{\mathrm{LJ}}}$	5.CPCTC

5. Given: $\angle \mathrm{MNP} \cong \angle O P N$, and $\overline{\mathrm{MN}} \cong \overline{\mathrm{OP}}$

Prove: $\overline{M P} \cong \overline{N O}$
Statements
Reasons

1. $\angle M N P \cong \angle O P N$ 1. Given
2. $\overline{\mathrm{MN}} \cong \overline{\mathrm{OP}}$
3. $\overline{\mathrm{NP}} \cong \overline{\mathrm{NP}}$
4. $\triangle \mathrm{MNP} \cong \triangle O P N$
5. $\overline{M P} \cong \overline{N O}$
6. Given
7. Reflexive Property
4.SAS
8. СРСТС

Homework review

6. Given: $\overline{\mathrm{ST}} \cong \overline{\mathrm{VU}}$

Prove: $\angle S V T \cong \angle U T V$

Statements	Reasons
$1 . \overline{S T} \cong \overline{V U}$	1. Given
$2 . \bar{\cong} \cong \overline{T V}$	2. Reflexive Property
$3 . \triangle S T V \cong \triangle U V T$	3. HL
$4 . \angle S V T \cong \angle U T V$	4.CPCTC

7. Given: $\overline{\mathrm{AC}} \cong \overline{\mathrm{CE}}, \overline{\mathrm{DC}} \cong \overline{\mathrm{BC}}$

Prove: $\angle B \cong \angle D$
Statements
8. $\overline{A C} \cong \overline{C E} \quad$ 1. Given
9. $\overline{D C} \cong \overline{B C}$
10. $\angle \mathrm{ACB} \cong \angle D C E$
11. $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
12. $\angle \mathrm{B} \cong \angle \mathrm{D}$
13. Given
14. Alternate Interior
4.SAS
15. CPCTC

Homework review

8. Given: $\overline{\mathrm{GH}}|\mid \overline{\mathrm{I}}, \mathrm{I}$ is the midpoint of HK and $\overline{\mathrm{GH}} \cong \overline{\mathrm{JI}}$

Prove: $\angle \mathrm{G} \cong \angle J$ Statements \quad Reasons

1. $\overline{\mathrm{GH}} \\| \mid \overline{\mathrm{I}}$	1. Given
2. $\overline{\mathrm{is}}$ the midpoint of $\overline{\mathrm{HK}}$	2. Given
3. $\overline{G H} \cong \bar{J}$	3. Given
4. $\overline{\mathrm{HI} \cong \overline{\mathrm{IK}}}$	4. Midpoint
5. $\angle G H \cong \angle J I K$	5. Corresponding
6. $\triangle G H I \cong \triangle J I K$	6. SAS
$7 . \angle \mathrm{G} \cong \angle \mathrm{J}$	7.CPCTC

2. I is the midpoint of $\overline{\mathrm{HK}}$
3. $\overline{G H} \cong \pi$
4. $\overline{\mathrm{HI}} \cong \overline{\mathrm{IK}}$
5. $\angle G H I \cong \angle J I K$
6. $\triangle G H I \cong \triangle J I K$
7. $\angle \mathrm{G} \cong \angle \mathrm{J}$
8. Given: $\overline{M P} \cong \overline{N P}, \overline{M N} \perp \overline{O P}$

Prove: $\overline{\mathrm{MO}} \cong \overline{\mathrm{ON}}$
Statements
Reasons

1. $\overline{M P} \cong \overline{N P}$
2. $\overline{\mathrm{MN}} \perp \overline{\mathrm{OP}}$
3. $\overline{\mathrm{OP}} \cong \overline{\mathrm{OP}}$
4. $\triangle \mathrm{MOP} \cong \triangle \mathrm{NOP}$
5. $\overline{M O} \cong \overline{O N}$

Homework review

Write a two column proof for each.
16. Given: $\overline{\mathrm{GH}} \cong \overline{\mathrm{JK}}, \overline{\mathrm{HI}} \cong \overline{\mathrm{KL}}$, and $\overline{\mathrm{IG}} \cong \overline{\mathrm{LJ}}$

Prove: $\angle \mathrm{I} \cong \angle \mathrm{L}$
Statements

1. $\overline{G H} \cong \overline{J K}$
2. $A I \cong K L$
3. $G \cong \square$
4. $\triangle A B C \cong \triangle E D C$
5. $\angle I \cong \angle L$

Reasons

1. Given
2. Given
3. Given
4. SSS
5. CPCTC
6. Given: $\angle \mathrm{N} \cong \angle \mathrm{P}, \angle \mathrm{M} \cong \angle \mathrm{Q}$, and $\overline{\mathrm{MO}} \cong \overline{\mathrm{QR}}$

Prove: $\angle 0 \cong \angle R$

Statements	Reasons
1. $\angle N \cong \angle P$	1. Given
2. $\angle M \cong \angle Q$	2. Given
3. $M O \cong Q R$	3. Given
4. $\triangle M N O \cong \triangle Q P R$	4. AAS
5. $\angle O \cong \angle R$	5. CPCTC

HOMEWOMK чeview
 18.

Given: $\angle \mathrm{U} \cong \angle \mathrm{V}, \angle \mathrm{T} \cong \angle \mathrm{W}$, and $\overline{\mathrm{TU}} \cong \overline{\mathrm{VW}}$

Prove: $\angle S \cong \angle X$

Statements	Reasons
1. $\angle U \cong \angle V$	1. Given
2. $\angle T \cong \angle W$	2. Given
3. $T U \cong \overline{V W}$	3. Given
4. $\triangle S T U \cong \triangle W V X$	4. ASA
5. $\angle S \cong \angle X$	5. CPCTC

19. Given: $\overline{\mathrm{AC}} \cong \overline{\mathrm{EF}}$, and $\overline{\mathrm{AB}} \cong \overline{\mathrm{ED}}$

Prove: $\overline{\mathrm{BC}} \cong \overline{\mathrm{FD}}$

Statements	Reasons
1. $\overline{A C} \cong \overline{E F}$	1. Given
2. $\overline{A B} \cong \angle \overline{E D}$	2. Given
3. $\triangle S T \cup \triangle W V X$	3. HL
4. $\overline{B C} \cong \overline{F D}$	4. CPCTC

Homework review

20.

Given: $\overline{\mathrm{GH}} \cong \overline{\mathrm{I}}, \angle \mathrm{GHJ} \cong \angle \mathrm{IJH}$
21. Given: $\overline{\mathrm{MN}} \cong \overline{\mathrm{NO}}, \overline{\mathrm{MP}} \cong \overline{\mathrm{OP}}$

Prove: $\angle 0 \cong \angle M$
Statements Reasons

1. $\overline{M N} \cong \overline{N O}$	1. Given
2. $\overline{M P} \cong \overline{O P}$	2. Given
3. $\overline{N P} \cong \overline{N P}$	3. Reflexive Property
4. $\triangle M N P \cong \triangle O N P$	4. SSS
5. $\angle O \cong \angle M$	5. CPCTC

Homework review

22. Given: $\overline{\mathrm{TU}} \cong \overline{\mathrm{WU}}, \angle \mathrm{T} \cong \angle \mathrm{W}$

Prove: $\overline{\mathrm{TS}} \cong \overline{\mathrm{WV}}$

Statements	Reasons
1. $\overline{T U \cong \overline{W U}}$	1. Given
2. $\angle T \cong \angle W$	2. Given
3. $\angle T U S \cong \angle W U V$	3. Vertical Angles
4. $\triangle G H J \cong \triangle I J H$	4. ASA
5. $\overline{T S} \cong \overline{W V}$	5. CPCTC

23. Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}, \angle \mathrm{B} \cong \angle \mathrm{E}$

Prove: $\overline{\mathrm{AC}} \cong \overline{\mathrm{DC}}$
Statements \quad Reasons

1. $\overline{A B} \cong \overline{D E}$
2. Given
3. $\angle B \cong \angle E$
4. $\angle B C A \cong \angle D C E$
5. $\triangle A B C \cong \triangle D E C$
6. $\overline{A C} \cong \overline{D C}$
7. Given
8. Vertical Angles
9. AAS
10. CPCTC

Homework review

24. Given: $\overline{\mathrm{HG}} \| \overline{\mathrm{I}}, \overline{\mathrm{GI}} \cong \overline{\mathrm{IK}}$, and $\angle \mathrm{HIG} \cong \angle \mathrm{JKI}$

Prove: $\angle \mathrm{C} \cong \angle \mathrm{F}$
Statements

2. $\overline{G I} \cong \overline{I K}$
3. $\angle H I G \cong \angle J K I$
4. $\angle H G I \cong \angle J I K$
4. $\triangle A B C \cong \triangle D E C$
5. $\angle C \cong \angle F$

Reasons

1. Given
2. Given
3. Given
4. Corresponding
5. ASA
6. CPCTC
7. Given: $\overline{\mathrm{MN}} \cong \overline{\mathrm{PO}}, \overline{\mathrm{MP}} \cong \overline{\mathrm{NO}}$

Prove: $\angle \mathrm{M} \cong \angle 0$

Homework review

26. Given: $\overline{\mathrm{TS}}|\mid \overline{\mathrm{VW}}, \overline{\mathrm{TU}} \cong \overline{\mathrm{WU}}$

Statements	Reasons		
1. $\overline{T S \\|} \\| \overline{V W}$	1. Given		
2. $\overline{T U \cong W U}$	2. Given		
3. $\angle S T U \cong \angle V W U$	3. Alternate Interior		
4. $\angle T U S \cong \angle W U V$	4. Vertical		
4. $\triangle S T U \cong \triangle W W U$	4. ASA		
5. $\overline{T S} \cong \overline{V W}$	5. CPCTC		

27. Given: $\overline{\mathrm{AB}} \| \overline{\mathrm{DE}}, \angle \mathrm{CBD} \cong \angle \mathrm{ADB}$

Prove: $\overline{\mathrm{BC}} \cong \overline{\mathrm{AD}}$
Statements

1. $\overline{A B} \| \overline{D E}$
2. $\angle C B D \cong \angle A D B$
3. $\angle A B D \cong \angle C D B$
4. $\overline{B D} \cong \overline{B D}$
5. $\triangle S T U \cong \triangle V W U$
6. $\overline{B C} \cong \overline{A D}$

209

Each pair of figures is similar. Find the missing Homework ${ }_{9}$, Ratait
9. Ratio of similarity $=2 / 3$.

11. Ratio of similarity $=2 / 7$.

$\frac{2}{7}=\frac{x}{18}$
$7(x)=2(18)$
$\frac{7 x}{7}=\frac{36}{7}$
$x=5.14$
10. Ratio of similarity $=4 / 5$.

$\frac{4}{5}=\frac{x}{12}$
$5(x)=4(12)$ $\frac{5 x}{5}=\frac{48}{5}$
 $x=9.6$
12. Ratio of similarity $=5 / 13$.

$$
\begin{aligned}
& \frac{6}{11}=\frac{x}{32} \\
& 11(x)=6(36) \\
& \frac{11 x}{11}=\frac{192}{11} \\
& x=17.45
\end{aligned}
$$

14.

16.

$\frac{2}{15}=\frac{5}{x}$

$$
\begin{aligned}
2(x) & =15(5) \\
\frac{2 x}{2} & =\frac{75}{2} \\
x & =37.5
\end{aligned}
$$

Bubble the correct answer choice from each item above.
\#8.
A.
\bigcirc ○.
\#9.
\#10.
\#11.
\#12.
\bigcirc A.
○B.
○ A .
B.

○c
OD.
Bubble the correct answer choice from each item above.

\#25. \bigcirc A B. ○ OD	\#26. ○A. \bigcirc B. C. OD.	\#27. ○. B. C. D	\#28. A. \bigcirc B. C. D.	\#29. A. B. C. D.	\#30. ○A. ○B. ○с D.

Bubble the correct answer choice from each item above.

\#31. ○A.	\#32. ○A.	\#33. \bigcirc A.	\#34. ○A.	\#35. A.	$\begin{aligned} & \text { \#36. } \\ & \text { A. } \end{aligned}$
$\bigcirc \mathrm{B}$.	$\bigcirc \mathrm{B}$.	$\bigcirc \mathrm{B}$.	B.	$\bigcirc \mathrm{B}$.	$\bigcirc \mathrm{B}$.
C.	$\bigcirc \mathrm{C}$				
$\bigcirc \mathrm{D}$.	D.	D.	$\bigcirc \mathrm{D}$.	$\bigcirc \mathrm{D}$.	$\bigcirc \mathrm{D}$.

Homework review: Sections VI

Homework review: Mid-segment Theorem

Corresponding Angles

$$
\begin{aligned}
& x=2(18) \\
& x=36
\end{aligned}
$$

4. Given: $\angle \mathrm{G} \cong \angle \mathrm{K}$, and $\angle \mathrm{I} \cong \angle \mathrm{L}$

Homework review: Triangles Section 6

Prove: $\triangle \mathrm{GHI} \sim \Delta \mathrm{KJL}$

Statements	Reasons
$1 . \angle \mathrm{G} \cong \angle \mathrm{K}$	1. Given
$2 . \angle I \cong \angle \mathrm{~L}$	2. Given
$3 . \triangle \mathrm{GHI} \sim \triangle \mathrm{KJL}$	3. AA

6. Given: $\frac{S T}{W V}=\frac{T U}{V X}=\frac{U S}{X W}$

Prove: $\triangle S T U \sim \triangle W V X$

Statements	Reasons
1. $\frac{S T}{W V}=\frac{T U}{V X}=\frac{U S}{W W}$	1. Given
2. $\Delta S T U \sim \triangle W V X$	2. SSS

5. Given: $\frac{\mathrm{MN}}{\mathrm{PQ}}=\frac{\mathrm{NO}}{\mathrm{QR}}, \angle \mathrm{N} \cong \angle \mathrm{Q}$

Prove: $\triangle M N O \sim \triangle P Q R$

Statements	Reasons
1. $\frac{\mathrm{MN}}{\mathrm{PQ}}=\frac{\mathrm{NO}}{\mathrm{QR}}$	1. Given
2. $\angle N \cong \angle Q$	2. Given
3. $\triangle \mathrm{MNO} \sim \triangle \mathrm{PQR}$	3. SAS

7. Given: $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}$

Prove: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

Statements	Reasons
1. $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$	1. Given
2. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$	2.SSS

8.

Given: $\overline{\mathrm{GK}} \| \overline{\mathrm{H}}$

Prove: Δ GIK $\sim \Delta$ HIJ

Statements	Reasons	
1. $\overline{G R} \\| H J$	1. Given	
2. $\angle \mathrm{K} \cong \angle \mathrm{HJI}$	2. Corresponding Angles	
3. $\angle \mathrm{G} \cong \angle \mathrm{JHI}$	3. Corresponding Angles	
4. $\triangle \mathrm{GIK} \sim \triangle \mathrm{HIJ}$	4.AA	

9.

Given: $\overline{\mathrm{MQ}} \| \overline{\mathrm{OP}}$

Prove: $\triangle M N Q \sim \triangle$ PON

Statements	Reasons	
1. $\overline{M Q \\|} \overline{O P}$	1. Given	
2. $\angle \mathrm{QMN} \cong \angle \mathrm{OPN}$	2. Alternate Interior	
3. $\angle M N Q \cong \angle P N O$	3. Vertical Angles	
4. $\triangle \mathrm{GIK} \sim \triangle \mathrm{HII}$	4. AA	

16.

Given: $\frac{\mathrm{GH}}{\mathrm{KJ}}=\frac{\mathrm{GI}}{\mathrm{JL}}, ~ \angle \mathrm{G} \cong \angle \mathrm{J}$

Prove: $\triangle \mathrm{GHI} \sim \Delta \mathrm{JKL}$

Statements	Reasons
1. $\frac{G H}{K J}=\frac{G l}{J L}$	1. Given
2. $\angle G \simeq \angle J$	2. Given
3. $\Delta G H J \sim \Delta I J H$	3. ASA

18. ${ }^{\text {Given: }} \frac{\mathrm{ST}}{V W}=\frac{T \mathrm{U}}{\mathrm{Wx}}, \angle \mathrm{T} \simeq \angle \mathrm{W}$

Prove: \triangle STU \triangle VWX

Statements	Reasons
1. $\frac{S T}{V W}=\frac{T U}{W X}$	1. Given
2. $\angle T \simeq \angle W$	2. Given
3. $\triangle S T U \sim \triangle W W X$	3. SAS

17. Given: $\angle M \cong \angle P, \angle O \cong \angle Q$

Prove: $\triangle O M N \sim \triangle D B C$

Statements	Reasons
1. $\angle M \cong \angle P$	1. Given
2. $\angle O \cong \angle Q$	2. Given
3. $\triangle G H J \sim \triangle I J H$	3. AA

19.

Given: $\frac{A B}{F D}=\frac{B C}{D E}=\frac{C A}{E F}$

Prove: $\triangle \mathrm{ABC} \sim \triangle \mathrm{FDE}$

Statements	Reasons
1. $\frac{A B}{F D}=\frac{B C}{D E}=\frac{C A}{E F}$	1. Given
2. $\triangle A B C \sim \triangle D E F$	2. SSS

20

Given: $\overline{\mathrm{GK}} \| \overline{\mathrm{H}}$

Prove: $\Delta \mathrm{GIK} \sim \Delta \mathrm{HIJ}$

Statements	Reasons	
1. $\overline{G K} \\| \overline{H J}$	1. Given	
2. $\angle G \cong \angle J H I$	2.	
Corresponding		
3. $\angle K \cong \angle H J I$	3. Corresponding	
4. $\Delta G K I \sim \triangle H J I$	4. AA	

21.

$$
\text { Given: } \frac{\mathrm{NO}}{\mathrm{QO}}=\frac{\mathrm{PO}}{\mathrm{MO}}
$$

Prove: $\triangle M N O \sim \triangle$ PQO

Statements	Reasons
1. $\frac{N O}{Q O}=\frac{P O}{M O}$	1. Given
2. $\angle N O M \cong \angle P O Q$	2. Vertical Angles
3. $\triangle M N O \sim \triangle P Q O$	3. SAS

22.

Given: $\angle \mathrm{S} \cong \angle U T V$

Prove: \triangle SUW $\sim \Delta T U V$
Statements \quad Reasons

1. $\angle S \cong \angle U T V$ 1. Given
2. $\angle U \cong \angle U \quad$ 2. Reflexive Property
3. $\triangle S U W \sim \triangle T U V$ 3. AA
4.

Given: $\overline{\mathrm{GH}} \| \overline{\mathrm{K}}$

Prove: $\Delta \mathrm{GHI} \sim \Delta \mathrm{KJI}$

Statements	Reasons	
1. $\overline{G H \\| J K}$	1. Given	
2. $\angle H G I \cong \angle J K I$	2. Alternate Interior	
3. $\angle G I H \cong \angle J I K$	3. Vertical	
4. $\triangle G H I \sim \triangle K J I$	4. AA	

Given: $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}}, \angle \mathrm{ACB} \cong \angle \mathrm{E}$

Prove: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DCE}$
Statements Reasons

1. $\overline{\mathrm{AB}} \\| \overline{D C}$	1. Given
2. $\angle A C B \cong \angle E$	2. Given
3. $\angle B \cong \angle D C E$	3. Corresponding
4. $\triangle A B C \sim \triangle D C E$	4. AA

25.

Prove: $\triangle \mathrm{QMO} \sim \triangle \mathrm{PNO}$

Statements	Reasons	
1. $\overline{M Q \\|} \overline{N P}$	1. Given	
2. $\angle M \cong \angle P N O$	2. Corresponding	
3. $\angle Q \cong \angle N P O$	3. Corresponding	
4. $\triangle Q M O \sim \triangle P N O$	4. AA	

26.

Given: $\triangle \mathrm{ABD}$ and $\triangle \mathrm{BCD}$ are equilateral

Prove: \triangle STU~ $\triangle V W X$

Statements	Reasons
1. $\angle S \cong \angle V$	1. Equilateral Triangle
2. $\angle T \cong \angle W$	2. Equilateral Triangle
3. $\angle U \cong \angle X$	3. Equilateral Triangle
3. $\triangle S T U \sim \triangle W W X$	3. AAA

27.

Given: $\frac{\mathrm{AB}}{\mathrm{DC}}=\frac{\mathrm{AC}}{\mathrm{CE}}, \overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$

Statements \quad Reasons

1. $\frac{A B}{D C}=\frac{A C}{C E} \quad$ 1. Given
2. $\overline{A B} \| \overline{C D} \quad$ 2. Given
3. $\angle A \cong \angle D C B$
4. $\triangle G H J \sim \triangle I J H$
5. Corresponding
6. SAS

Circles: Just what are they good for?

Apparently these people found a good use for them!

We will find even better uses for circles.

The GUTS of a circle...

Circumference

$$
C=2 \pi r
$$

Area

$$
A=\pi r^{2}
$$

Diameter

Divides the circle into two equal parts.

Radius

Straight line connecting the center to the edge of the circle.
Half the length of the diameter.

The GUTS of a circle...

Radius

Every radius in the same circle is equal to all the other radii in the same circle.

So what is the value of x ?

$$
\begin{gathered}
5 x-32=x \\
x=8
\end{gathered}
$$

The GUTS of a circle...

Chord

Line drawn inside the circle that touches the circle at its endpoints.

Chords are named by their end points.

Circles guts

Central Angle

Vertex is the center of the circle and it extends to the edge of the circle.

$\angle A B C$ is a central angle

Circles guts

Inscribed Angle

Vertex is on the edge of the circle and extends inward to the opposite edge of the circle.
$\angle D E F$ is an inscribed angle

Quick Check

What is the circumference of a circle?

Did you say "pi are squared"? WRONG

Pie are round!

Circles guts

Arc

Part of the circumference cut off by an angle.

An Arc can be referred to by its measure Or its length.

The measure of an Arcs is based on the central angle that intercepts the Arc.

$$
m \widehat{a c}=45
$$

Circles guts

Arc

The length of an Arc is based on its portion of the circumference.

What percentage of this circle's circumference does this arc represent?

$$
\text { percent }=\frac{\text { part }}{\text { whole }}=\frac{45}{360}=\frac{1}{8}
$$

The arc length is equal to this percentage time the circumference of the circle.

Circles guts

Sectors

A sector is like a pizza slice. It is a portion of the area of a circle.

What percentage of this circle's area does this sector represent?

$$
\text { percent }=\frac{\text { part }}{\text { whole }}=\frac{90}{360}=\frac{1}{4}
$$

The sector area is equal to this percentage time the area of the circle.

$$
s=\left(\frac{1}{4}\right) \pi r^{2}=\left(\frac{1}{4}\right) \pi\left(5^{2}\right)=\left(\frac{25}{4}\right) \pi
$$

Central Angles vs. Inscribed Angles

A central angle is equal to the measure of its intercepted arc. $m \angle A O B=m \widehat{A B}=\mathbf{8 0}^{\circ}$

An inscribed angle is equal to one half the measure of its intercepted arc.

$$
m \angle A B C=\frac{1}{2} m \widehat{A C}=50^{\circ}
$$

Find X (no pointing)

$$
x=113
$$

2.

$$
x=62
$$

$x=192$

Use the properties we just discussed to find the measure of angle ABC. What do you notice about angle ABC and angle ADC?

They intercept the same arc!
How does that help you determine the
 value of x ?

Because they intercept the same arc the two angles have the same measure.

Therefore the measure of angle ABC is also 81°.

More Inside Angles.

But first a word about tangents.

Tangent

In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Informally, it is a line through a pair of infinitely close points on the curve.

There is a special relationship between tangents and the arcs they intercept.
Notice these angles are inside the circle!

Write this formula down. It's not in your packet. (It's in your study guide)

Tangent Chord Angle $=\frac{1}{2}$ Intercepted arc

$$
\begin{aligned}
\angle M L K & =\frac{1}{2} m \widehat{K L} \\
& =\frac{1}{2}(130) \\
& =65
\end{aligned}
$$

You try these two...

Find the measure of $\angle S R Q$
73

Find the measure of major arc $\widehat{G F}$

Lets talk about angles formed by two intersecting chords.

We can use the intercepted arcs to find angle measures.

Angle formed inside by intersecting chords

$$
=\frac{1}{2} \text { Sum of intersected arcs }
$$

$$
\begin{aligned}
\angle B E D & =\frac{1}{2}(m \widehat{A C}+m \widehat{B D}) \\
& =\frac{1}{2}(170+70) \\
& =120
\end{aligned}
$$

Sometimes we have to work backward

Find $m \widehat{B C}$
$\angle B D C=\frac{1}{2}(m \widehat{B C}+m \widehat{A E})$ Use the formula $85=\frac{1}{2}(m \widehat{B C}+70) \quad$ Fill in what you know
$170=m \widehat{B C}+70$
$100=m \widehat{B C}$

Solve for what you don't know

You try this one
Find $m \widehat{U T}$

$$
\angle U S T=\frac{1}{2}(m \widehat{U T}+m \widehat{V A}) \quad \text { Use the formula }
$$

$$
120=\frac{1}{2}(m \widehat{U T}+60) \quad \text { Fill in what you know }
$$

$$
240=m \widehat{U T}+60
$$

Solve for what
you don't know

To Summarize

Central
Angle

Inscribed
Angle

Intersecting
Chord Angles

Tangent Angle

PERFECT PRACTICE MAKES PERFECT!

Work on your Circles packet.

Problems 24-31 in your study guide

If you finish it today's assignment before you leave, you can accumulate credits for a 2 point addition to your unit test grade.

You'll need 5 credits for 2 points.

