Identify the following:

Intervals

Increasing: $(-2,1)$
Decreasing: $(-\infty,-2),(1, \infty)$
Constant: None
X Intercepts: $(-3,0),(0,0),(2,0)$
Y Intercepts: $(0,0)$
Relative Maximum(s): (1,4)
Relative Minimum(s): (-1,-8)
Domain: All Real Numbers
Range: All Real Numbers
End Behavior: as $x \rightarrow \infty, y \rightarrow-\infty$

$$
\text { as } x \rightarrow-\infty, y \rightarrow \infty
$$

Thursday, January 29, 2015

Objectives for today

Identify vertical, horizontal and flip transformations from both a function equation and a function graph.

Vertical Transformations

Function Notation	Description of Transformation
$\mathrm{g}(x)=f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative

Horizontal Translations

Function Notation	Description of Transformation
$g(x)=f(x \pm c)$	Horizontal shift left C units if C is positive.
	Horizontal shift right C units if C is negative

Flips

Function Notation	Description of Transformation
$\mathrm{g}(x)=-f(x)$	Reflected over the x -axis

Parent Function
$y=|x|+1$
$y=|x+2|$
$y=\sqrt{x-7}$
$y=x^{3}-6$
Cubic
$y=-(x-8)^{2}-6 \quad$ Quadratic
$y=\sqrt{x+5}+42$
Radical
Absolute Value

Radical - Square Root

Transformations
Absolute Value Up 1

Flip, Right 8, Down 6

Left 5, Up 42

What's the difference?

$$
\begin{gathered}
y=-x^{2} \\
y=(-x)^{2}
\end{gathered}
$$

Write the equation for the transformed function represented in this graph.

```
Parent Function? Radical, f(x)=\sqrt{}{\boldsymbol{x}}
```

What do we know about the shape of the graph that can help us?

How is it different?

Which axis has it flipped over?

Starts at $(0,0)$ and increases

Starts at $(0,0)$ and decreases. X-axis

$$
f(x)=-\sqrt{x}
$$

Stretching and Compressing a function.

Parent Function
Quadratic $f(x)=x^{2}$

Transformed Function
Vertical stretch

Transformed Function
Vertical compression

Stretching and Compressing a function.

Parent Function
Quadratic $f(x)=x^{3}$

Transformed Function
Vertical stretch

Transformed Function
Vertical compression

So how do we represent these transformations algebraically?

Vertical Stretches and Compressions

When functions are multiplied by a constant outside of the $f(x)$ part, you stretch and compress the function.

Function Notation

$f(x)=c f(x)$

Description of Transformation
Vertical Stretch if $\boldsymbol{c}>\mathbf{1}$
Vertical Compression if $\mathbf{0}<\boldsymbol{c}<\mathbf{1}$

Vertical Stretches and Compressions

Function Notation	Description of Transformation
$f(x)=c f(x)$	Vertical Stretch if $\boldsymbol{c}>\mathbf{1}$
	Vertical Compression if $\mathbf{0}<\boldsymbol{c}<\mathbf{1}$

How do we interpret this function notation?

$$
\begin{aligned}
& \text { Let } f(x)=x^{2} \text { and } c=3 \text { then } g(x)=3 x^{3} \\
& \text { Let } f(x)=\sqrt{x} \text { and } c=\frac{1}{4} \text { then } g(x)=\frac{1}{4} \sqrt{x} \\
& \text { Let } f(x)=2^{x} \text { and } c=7 \text { then } g(x)=7\left(2^{x}\right)
\end{aligned}
$$

Let's play "What's going to happen to the parent function?"

$$
f(x)=3 x^{2}
$$

X	X^{2}	$3 X^{2}$
3	9	27
2	4	12
1	1	3
0	0	0
-1	1	3
-2	4	12
-3	9	27

Let's play "What's going to happen to the parent function?"

$\boldsymbol{f}(\boldsymbol{x})=\mathbf{4} \sqrt{\boldsymbol{x}}$		
\times	\sqrt{x}	$4 \sqrt{x}$
9	3	12
4	2	8
1	1	4
0	0	0

Let's play "What's going to happen to the parent function?"

$$
f(x)=\frac{1}{3} x^{3}
$$

I spy functions!

Did we meet our objectives?

