Identify the following:

Intervals Increasing: (-2, 1)Decreasing: $(-\infty, -2), (1, \infty)$ Constant: None X Intercepts: (-3,0), (0,0), (2,0) Y Intercepts: (0, 0) Relative Maximum(s): (1, 4) Relative Minimum(s): (-1, -8)Domain: All Real Numbers Range: All Real Numbers End Behavior: $as x \rightarrow \infty, y \rightarrow -\infty$ as $x \to -\infty, y \to \infty$

Thursday, January 29, 2015

Objectives for today

Identify vertical, horizontal and flip transformations from both a function equation and a function graph.

Vertical Transformations

Function Notation	Description of Transformation
$g(x) = f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative

Horizontal Translations

Function Notation	Description of Transformation	
$g(x) = f(x \pm c)$	Horizontal shift left C units if C is positive.	
	Horizontal shift right C units if C is negative	

Flips

Function Notation	Description of Transformation	
g(x) = -f(x)	Reflected over the x-axis	

Suc		Parent Function	Transformations
matic	y = x + 1	Absolute Value	Up 1
Transformations	y = x + 2	Absolute Value	Left 2
Trai	$y = \sqrt{x - 7}$	Radical – Square Root	Right 7
	$y = x^3 - 6$	Cubic	Down 6
	$y = -(x-8)^2 - 6$	Quadratic	Flip, Right 8, Down 6
	$y = \sqrt{x+5} + 42$	Radical	Left 5, Up 42

What's the difference?

$$y = -x^2$$
$$y = (-x)^2$$

eminder! ORDER OF OPE			DRDER OF OPERATIONS
	Ρ	Please	Parentheses
	Ε	Excuse	Exponents
	Μ	My	Multiplication
	D	Dear	Division
	Α	Aunt	Addition
	S	Sally	Subtraction

Write the equation for the transformed function represented in this graph.

Parent Function? Radical, $f(x) = \sqrt{x}$

What do we know about the shape of the graph that can help us?

Starts at (0,0) and <u>increases</u>

How is it different?

Starts at (0,0) and <u>decreases.</u>

Which axis has it flipped over?

X-axis

Stretching and Compressing a function.

Parent Function Quadratic f(x)=x²

Transformed Function

Vertical stretch

Transformed Function

Vertical compression

Stretching and Compressing a function.

Parent Function Quadratic f(x)=x³

Transformed Function Vertical stretch

Transformed Function

Vertical compression

So how do we represent these transformations algebraically?

Vertical Stretches and Compressions

When functions are multiplied by a constant **outside** of the f(x) part, you stretch and compress the function.

Function Notation	Description of Transformation
f(x) = cf(x)	Vertical Stretch if $c>1$
	Vertical Compression if $0 < c < 1$

Vertical Stretches and Compressions

Function Notation	Description of Transformation	
f(x) = cf(x)	Vertical Stretch if $m{c} > m{1}$	
	Vertical Compression if $0 < c < 1$	

How do we interpret this function notation?

Let $f(x) = x^2$ and c = 3 then $g(x) = 3x^3$

Let
$$f(x) = \sqrt{x}$$
 and $c = \frac{1}{4}$ then $g(x) = \frac{1}{4}\sqrt{x}$

Let $f(x) = 2^x$ and c = 7 then $g(x) = 7(2^x)$

Let's play "What's going to happen to the parent function?"

$$f(x) = 3x^2$$

X	X ²	3X ²
3	9	27
2	4	12
1	1	3
0	0	0
-1	1	3
-2	4	12
-3	9	27

Transformations

Let's play "What's going to happen to the parent function?"

$$f(x) = 4\sqrt{x}$$

X	\sqrt{x}	$4\sqrt{x}$
9	3	12
4	2	8
1	1	4
0	0	0

Let's play "What's going to happen to the parent function?"

Did we meet our objectives?

Complete the exit ticket and bring it to me to check.