Identify the following:

Intervals

Increasing: $(-2,1)$
Decreasing: $(-\infty,-2),(1, \infty)$
Constant: None
X Intercepts: $(-3,0),(0,0),(2,0)$
Y Intercepts: $(0,0)$
Relative Maximum(s): (1,4)
Relative Minimum(s): (-1,-8)
Domain: All Real Numbers
Range: All Real Numbers
End Behavior: as $x \rightarrow \infty, y \rightarrow-\infty$

$$
\text { as } x \rightarrow-\infty, y \rightarrow \infty
$$

Homework Questions?

$$
Q^{41 / 2}{ }_{\text {oo b }_{O_{4 V}}}
$$

Clear your desks

It's Quiz Time!

You will not need a calculator.

10	10
9	9
8	8
7	7
6	6
5	5
4	4
3	3
2	2
1	1

Identify function stretches and compressions from both a graph and an equation.

Create graphs for functions that have been transformed and are in the form

$$
g(x)=a \cdot f(x+h)-k
$$

Interpret function equations that are in the above form and identify the transformations that have been applied to the parent function $f(x)$.

Vertical Transformations

Function Notation	Description of Transformation
$\mathrm{g}(x)=f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative

Function Notation
$g(x)=f(x \pm c)$

Description of Transformation
Horizontal shift left C units if C is positive.
Horizontal shift right C units if C is negative

Reflections

When a negative sign is found on the outside of the " $f(x)$ part" the function is flipped over the \mathbf{x}-axis.

When a negative sign is found on the inside of the " $f(x)$ part" the function is flipped over the y-axis.

Function Notation	Description of Transformation
$\mathrm{g}(x)=-f(x)$	Reflected over the x -axis
$\mathrm{g}(x)=f(-x)$	Reflected over the y -axis

Reflections

Function Notation	Description of Transformation
$g(x)=-f(x)$	Reflected over the x-axis
$g(x)=f(-x)$	Reflected over the y-axis

What's the difference?

$$
\begin{gathered}
y=-x^{2} \\
y=(-x)^{2}
\end{gathered}
$$

Reflection across the x axis

$\boldsymbol{f}(\boldsymbol{x})=-\boldsymbol{x}^{\mathbf{2}}$		
X	X^{2}	$-\mathrm{X}^{2}$
3	9	-9
2	4	-4
1	1	-1
0	0	0
-1	1	-1
-2	4	-4
-3	9	-9

Reflection across the y axis

$\boldsymbol{f}(\boldsymbol{x})=(-\boldsymbol{x})^{\mathbf{3}}$		
\mathbf{X}	$-\mathbf{X}$	$(-X)^{3}$
3	-3	-27
2	-2	-8
1	-1	-1
0	0	0
-1	1	1
-2	2	8
-3	3	27

Write the equation for the transformed function represented in this graph.

Parent Function? Radical, $\boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}}$

What do we know about the shape of the graph that can help us?

How is it different?

Which axis has it flipped

Starts at (0,0) and increases

Starts at $(0,0)$ and decreases.

X-axis

$$
f(x)=-\sqrt{x}
$$

Write two
equations that could represent the function presented in this graph.

$$
\begin{aligned}
& \mathbf{g}(\boldsymbol{x})=|x| \\
& \mathbf{g}(x)=|-x|
\end{aligned}
$$

Now let's talk non-rigid...

Stretching and Compressing a function.

Stretching and Compressing a function.

Parent Function
Quadratic $f(x)=x^{2}$

Transformed Function
Vertical stretch

Transformed Function
Vertical compression

Stretching and Compressing a function.

Parent Function
Quadratic $f(x)=x^{3}$

Transformed Function
Vertical stretch

Transformed Function
Vertical compression

So how do we represent these transformations algebraically?

Vertical Stretches and Compressions

When functions are multiplied by a constant outside of the $f(x)$ part, you stretch and compress the function.

Function Notation

$f(x)=c f(x)$

Description of Transformation
Vertical Stretch if $\boldsymbol{c}>\mathbf{1}$
Vertical Compression if $\mathbf{0}<\boldsymbol{c}<\mathbf{1}$

Vertical Stretches and Compressions

Function Notation	Description of Transformation
$f(x)=c f(x)$	Vertical Stretch if $\boldsymbol{c}>\mathbf{1}$
	Vertical Compression if $\mathbf{0}<\boldsymbol{c}<\mathbf{1}$

How do we interpret this function notation?

$$
\begin{aligned}
& \text { Let } f(x)=x^{2} \text { and } c=3 \text { then } g(x)=3 x^{3} \\
& \text { Let } f(x)=\sqrt{x} \text { and } c=\frac{1}{4} \text { then } g(x)=\frac{1}{4} \sqrt{x} \\
& \text { Let } f(x)=2^{x} \text { and } c=7 \text { then } g(x)=7\left(2^{x}\right)
\end{aligned}
$$

Let's play "What's going to happen to the parent function?"

$$
f(x)=3 x^{2}
$$

X	X^{2}	$3 X^{2}$
3	9	27
2	4	12
1	1	3
0	0	0
-1	1	3
-2	4	12
-3	9	27

Let's play "What's going to happen to the parent function?"

$\boldsymbol{f}(\boldsymbol{x})=\mathbf{4} \sqrt{\boldsymbol{x}}$		
\times	\sqrt{x}	$4 \sqrt{x}$
9	3	12
4	2	8
1	1	4
0	0	0

Let's play "What's going to happen to the parent function?"

$$
f(x)=\frac{1}{3} x^{3}
$$

Work with a partner to finish the transformations work sheet.

I spy functions!

Write the equation for the

$$
g(x)=5 x^{2}
$$

transformed function represented in this graph.

Parent Function?

What do we know about the shape of the graph that can help us?

How is it different?

Find a point on this graph.
Create an equation from
what we know and solve for the stretch or compression factor.

Quadratic, $f(x)=x^{2}$
Vertex at $(0,0)$ and opens up.

No vertical or horizontal shifts. No Flip.
$(1,5)$

$y=c x^{2}$
$5=c 1^{2}$
5/1 = c
5=c

Write the equation for the transformed function represented in this graph.

Parent Function?

What do we know about the shape of the graph that can help us?

How is it different?

Find a point on this graph.
Create an equation from what we know and solve for the stretch or compression factor.

Linear, $f(x)=x$
Increasing, centered at $(0,0)$

No vertical or horizontal shifts. No Flip.

$(10,5)$
$y=c x$
$5=c 10$
$5 / 10=c$
$1 / 2=c$

Did we meet our objectives?

