Identify the following:

Intervals				
Increasing: (-2, 1)				
Decreasing: $(-\infty, -2), (1, \infty)$				
Constant: None				
X Intercepts: $(-3, 0), (0, 0), (2, 0)$				
Y Intercepts: (0, 0)				
Relative Maximum(s): (1, 4)				
Relative Minimum(s): (-1, -8)				
Domain: All Real Numbers				
Range: All Real Numbers				
End Behavior: $as x \rightarrow \infty, y \rightarrow -\infty$				
as $x \to -\infty$, $y \to \infty$				

Homework Questions?

Quiz TODAY

Clear your desks

It's Quiz Time!

You will not need a calculator.

Identify function stretches and compressions from both a graph and an equation.

Create graphs for functions that have been transformed and are in the form $g(x) = a \cdot f(x+h) - k$

Interpret function equations that are in the above form and identify the transformations that have been applied to the parent function f(x).

Vertical Transformations

	Function Notation	Description of Transformation
	$g(x) = f(x) \pm c$	Vertical shift up C units if C is positive
		Vertical shift down C units if C is negative
Horiz	zontal Translations	

Function Notation	Description of Transformation
$g(x) = f(x \pm c)$	Horizontal shift left C units if C is positive.
	Horizontal shift right C units if C is negative

Reflections

When a negative sign is found on the **outside** of the "f(x) part" the function is **flipped over the x-axis**.

When a negative sign is found on the **inside** of the "f(x) part" the function is **flipped over the y-axis**.

Function Notation	Description of Transformation
g(x) = -f(x)	Reflected over the x-axis
g(x) = f(-x)	Reflected over the y-axis

Reflections

Function Notation	Description of Transformation
g(x) = -f(x)	Reflected over the x-axis
g(x) = f(-x)	Reflected over the y-axis

What's the difference?

$$y = -x^2$$
$$y = (-x)^2$$

2 minder!				
		(ORDER OF OPERATIONS	
	Ρ	Please	Parentheses	
	Ε	Excuse	Exponents	
	Μ	My	Multiplication	
	D	Dear	Division	
	Α	Aunt	Addition	
	S	Sally	Subtraction	

Reflection across the x axis

$$\begin{array}{c|c} f(x) = -x^2 \\ \hline X & X^2 & -X^2 \\ \hline 3 & 9 & -9 \\ 2 & 4 & -4 \\ \hline 1 & 1 & -1 \\ 0 & 0 & 0 \\ \hline -1 & 1 & -1 \\ 0 & 0 & 0 \\ \hline -1 & 1 & -1 \\ \hline -2 & 4 & -4 \\ \hline -3 & 9 & -9 \end{array}$$

Reflection across the y axis

$f(x) = (-x)^3$			
X	-X	(-X) ³	
3	-3	-27	
2	-2	-8	
1	-1	-1	
0	0	0	
-1	1	1	
-2	2	8	
-3	3	27	

Write the equation for the transformed function represented in this graph.

Parent Function? Radical, $f(x) = \sqrt{x}$

What do we know about the shape of the graph that can help us?

Starts at (0,0) and <u>increases</u>

How is it different?

Starts at (0,0) and <u>decreases.</u>

Which axis has it flipped over?

X-axis

Write two equations that could represent the function presented in this graph.

g(x) = |x|g(x) = |-x|

Now let's talk non-rigid...

Stretching and Compressing a function.

Stretching and Compressing a function.

Parent Function Quadratic f(x)=x²

Transformed Function

Vertical stretch

Transformed Function

Vertical compression

Stretching and Compressing a function.

Parent Function Quadratic f(x)=x³

Transformed Function Vertical stretch

Transformed Function

Vertical compression

So how do we represent these transformations algebraically?

Vertical Stretches and Compressions

When functions are multiplied by a constant **outside** of the f(x) part, you stretch and compress the function.

Function Notation	Description of Transformation
f(x) = cf(x)	Vertical Stretch if $c>1$
	Vertical Compression if $0 < c < 1$

Vertical Stretches and Compressions

Function Notation	Description of Transformation
f(x) = cf(x)	Vertical Stretch if $c>1$
	Vertical Compression if $0 < c < 1$

How do we interpret this function notation?

Let $f(x) = x^2$ and c = 3 then $g(x) = 3x^3$

Let
$$f(x) = \sqrt{x}$$
 and $c = \frac{1}{4}$ then $g(x) = \frac{1}{4}\sqrt{x}$

Let $f(x) = 2^x$ and c = 7 then $g(x) = 7(2^x)$

Let's play "What's going to happen to the parent function?"

$$f(x) = 3x^2$$

X	X ²	3X ²
3	9	27
2	4	12
1	1	3
0	0	0
-1	1	3
-2	4	12
-3	9	27

Let's play "What's going to happen to the parent function?"

$$f(x) = 4\sqrt{x}$$

X	\sqrt{x}	$4\sqrt{x}$
9	3	12
4	2	8
1	1	4
0	0	0

Let's play "What's going to happen to the parent function?"

Work with a partner to finish the transformations work sheet.

Write the equation for the transformed function represented in this graph.

Parent Function?

Quadratic, f(x)=x²

What do we know about the shape of the graph that can help us? Vertex at (0,0) and opens up.

How is it different?

No vertical or horizontal shifts. No Flip.

Find a point on this graph.

(1,5)

Create an equation from	y = cx ²
what we know and solve	5 = c1 ²
for the stretch or	5/1 = c
compression factor.	, 5= с

g(x)=10x³ Write the equation for the transformed function represented in this graph. 15 **Parent Function?** Cubic, $f(x)=x^2$ 10 What do we know about Increasing, the shape of the graph centered at (0,0) that can help us? with a flat bit. 5 How is it different? No vertical or horizontal shifts. No Flip. -15 -10 -5 5 Find a point on this graph. (1,10)Create an equation from $y = cx^2$ what we know and solve $10 = c1^2$ for the stretch or 10/1 = ccompression factor. **10 = c**

10

15

Write the equation for the transformed function represented in this graph.

Parent Function?

Linear, f(x)=x

What do we know about the shape of the graph that can help us? Increasing, centered at (0,0)

How is it different?

No vertical or horizontal shifts. No Flip.

Find a point on this graph.

Create an equation from what we know and solve for the stretch or compression factor. (10,5)

y = cx 5 = c10 5/10 = c 1/2 = c

Did we meet our objectives?

Complete the exit ticket and bring it to me to check.