

Thursday, March 5, 2015

1. Put the expression $2x^2 - 12x + 22$ in vertex form.

2. Solve the equation $2\sqrt{x+1} + 2 = 8$

3. Factor $2x^3 - 98x$ *Hint: GCF*

Find the roots of higher order polynomials.

Find complex roots of higher order polynomials.

Homework

Packet Page 12-13; 1-3, 5-7 and 10

Essential Understanding The degree of a polynomial equation tells you how many roots the equation has.

It is easy to see graphically that every polynomial function of degree 1 has a single zero, the *x*-intercept. However, there appear to be three possibilities for polynomials of degree 2. They correspond to these three graphs:

Theorem The Fundamental Theorem of Algebra

If P(x) is a polynomial of degree $n \ge 1$, then P(x) = 0 has exactly *n* roots, including multiple and complex roots.

So $p(x) = x^3 + 4x^2 - 2$ has 3 roots

take note

So f(x) = x⁴ + 3x² - 7 has 4 roots

So g(x) = 7x¹⁰² + 43x²⁷ - x has 102 roots

Let's play how many roots?

Show me with your fingers...

 $f(x) = x^{2} + 2$ $f(x) = 7x^{5} + 4x^{4} + 3x - 3$ $f(x) = x^{2} + x^{6} - 2$ $f(x) = x^{23} + 4x^{6} - 3$

So how do we find all these roots?

Find all the roots of $y = x^4 + x^3 - 2x^2 + 4x - 24$

First of all, how many roots are there going to be? 4

Thank you FTA!

Enter the equation into your calculator and graph.

How many roots/zeros do you see? 2

What are they? x = -3 and x = 2

So where are the other 2 roots? *IDK*

Finding the other roots

Since we know two of the roots, we can use synthetic division to factor them out of the original function. We will end up with a quadratic.

2	1	1	-2	4	-24
		2	6	8	24
-3	1	3	4	12	0
		-3	0	-12	
	1	0	4	0	

$$x^{4} + x^{3} - 2x^{2} + 4x - 24$$
$$x^{3} + 3x^{2} + 4x + 12$$

Finding the other roots

Now use quadratic formula to find the remaining two roots.

 $x^2 + 4$

$$\frac{-0 \pm \sqrt{0^2 - 4(1)(4)}}{2(1)} = \frac{\pm \sqrt{-16}}{2} = \frac{\pm 4i}{2} = \pm 2i$$

So the four roots are 2, -3, 2i and -2i

Yikes that's a lot of work!

What are all the zeros of $f(x) = x^4 + x^3 - 7x^2 - 9x - 18$

Graph it first.

This example is on the handout from today.

You do 1 and 2 on page 12 of your packet.

1.
$$x^4 - 8x^3 + 11x^2 + 40x - 80$$

2.
$$4x^4 - x^3 - 12x^2 + 4x - 16$$

Work on your homework.

