Warm-up

Thursday, March 5, 2015

1. Put the expression $2 x^{2}-12 x+22$ in vertex form.
2. Solve the equation $2 \sqrt{x+1}+2=8$
3. Factor $2 x^{3}-98 x$ Hint: GCF

Objectives

Find the roots of higher order polynomials.
Find complex roots of higher order polynomials.

Homework
Packet Page 12-13; 1-3, 5-7 and 10

Essential Understanding The degree of a polynomial equation tells you how many roots the equation has.

It is easy to see graphically that every polynomial function of degree 1 has a single zero, the x-intercept. However, there appear to be three possibilities for polynomials of degree 2 . They correspond to these three graphs:

$$
y=x^{2}-4
$$

Two real zeros

$y=x^{2}-2 x+1$
One real zero

$y=x^{2}+2 x+2$
No real zeros

Theorem The Fundamental Theorem of Algebra

If $P(x)$ is a polynomial of degree $n \geq 1$, then $P(x)=0$ has exactly n roots, including multiple and complex roots.

So $p(x)=x^{3}+4 x^{2}-2$ has 3 roots

So $f(x)=x^{4}+3 x^{2}-7$ has 4 roots
So $g(x)=7 x^{102}+43 x^{27}-x$ has 102 roots

Let's play how many roots?

Show me with your fingers...

$$
\begin{aligned}
& f(x)=x^{2}+2 \\
& f(x)=7 x^{5}+4 x^{4}+3 x-3 \\
& f(x)=x^{2}+x^{6}-2 \\
& f(x)=x^{23}+4 x^{6}-3
\end{aligned}
$$

So how do we find all these roots?

Find all the roots of $y=x^{4}+x^{3}-2 x^{2}+4 x-24$

First of all, how many roots are there going to be?
Thank you FTA!

Enter the equation into your calculator and graph.

How many roots/zeros do you see? 2

What are they? $\quad x=-3$ and $x=2$

So where are the other 2 roots? IDK

Finding the other roots
Since we know two of the roots, we can use synthetic division to factor them out of the original function. We will end up with a quadratic.
$\left.\begin{array}{c|rrrrr}1 & 1 & -2 & 4 & -24 \\ 2 & 6 & 8 & 24\end{array}\right) \quad x^{4}+x^{3}-2 x^{2}+4 x-24$

Finding the other roots
Now use quadratic formula to find the remaining two roots.
$x^{2}+4$

$$
\frac{-0 \pm \sqrt{0^{2}-4(1)(4)}}{2(1)}=\frac{ \pm \sqrt{-16}}{2}=\frac{ \pm 4 i}{2}= \pm 2 i
$$

So the four roots are $2,-3,2 i$ and $-2 i$

What are all the zeros of $f(x)=x^{4}+x^{3}-7 x^{2}-9 x-18$

Graph it first.

You do 1 and 2 on page 12 of your packet.

1. $x^{4}-8 x^{3}+11 x^{2}+40 x-80$
2. $4 x^{4}-x^{3}-12 x^{2}+4 x-16$

Work on your homework.

