WARM UP

1. List the 6 trig functions and their ratios.
2. Find the missing side length.
3. Given triangle $A B C$ with angle B a right angle.
If $\cos A=\frac{3}{5}$, find the remaining 5 trig functions for this angle.

Objectives

- Use the Unit Circle to find trig values for the common angles on the circle.

Homework

- Complete the Unit Circle Worksheets

Homework
Review

No Homework!

Clear your desks. Lets get the quiz out of the way.

Yesterday All my troubles seemed so far away....

We talked about the unit circle
Found two ways to measure angles
How do we convert between the two?
Found the coordinates for the common angles on the unit circle.

What are the common angles?

Sine and Cosine on the Unit Circle

Remember the
30-60-90 Triangle

Sine and Cosine on the Unit Circle

Sine and Cosine on the Unit Circle

Remember the
30-60-90 Triangle

Sine and Cosine on the Unit Circle

Remember the radius on the unit circle is equal to 1 .

Therefore the cosine of any angle on the unit circle is equal to the x coordiante of the point on the circle.

Sine is equal to the y coordinate of the point on the circle.
(cos,sin)

Sine and Cosine on the Unit Circle

Find the cosine of 60°

$$
\cos (60)=\frac{1}{2}
$$

Find the sine of 60°

$$
\sin (60)=\frac{\sqrt{3}}{2}
$$

Find the sine of $\frac{\pi}{4}$

$$
\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}
$$

TANGENT on the Unit Circle

$$
\operatorname{Tan}=\frac{\operatorname{Sin}}{\operatorname{Cos}}
$$

Find the tangent of 45°

$$
\tan 45=\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1
$$

Your completed unit circle should look like this...

Use your unit circle to find the following

1) $\sin \left(90^{\circ}\right)=1$
2) $\sin \left(\frac{5 \pi}{4}\right)=\frac{-\sqrt{2}}{2}$
3) $\tan \left(\frac{5 \pi}{4}\right)=\mathbf{1}$

Use your unit circle to find the following
2) $\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$
4) $\cos 135^{\circ}=\frac{-\sqrt{2}}{2}$
6) $\tan \left(180^{\circ}\right)=\mathbf{0}$
(0)

