1. What is the area of the triangle shown below?

2. Express the quotient below in simplest form.

$$
\frac{y+2}{2 y^{2}-3 y-2} \div \frac{y^{2}-4}{y^{2}+y-6}
$$

3. State any restrictions on the variable for the quotient above.

Objectives Solve rational equations
Solve problems involving varying rates of work.

Homework Workbook page 231: 6, 8, 10, 11, 19 20, 24, 27, 28, 29, 30

Homework...

Simplify each sum or difference. State any restrictions on the variables.
5. $\frac{x^{2}}{5}+\frac{x^{2}}{5} \frac{2 x^{2}}{5}$
6. $\frac{6 y-4}{y^{2}-5}+\frac{3 y+1}{y^{2}-5} \frac{3(3 y-1)}{y^{2}-5} ; y \neq \pm \sqrt{5}$
7. $\frac{2 y+1}{3 y}+\frac{5 y+4}{3 y} \frac{7 y+5}{3 y} ; y \neq 0$
8. $\frac{12}{x y^{3}}-\frac{9}{x y^{3}} \frac{3}{x y^{3} ;} ; x_{i} y \neq 0$
9. $-\frac{2}{n+4}-\frac{n^{2}}{n^{2}-16} \frac{2-n}{n-4} ; n \neq \pm 4$
10. $\frac{3}{8 x^{3} y^{3}}-\frac{1}{4 x y} \frac{3-2 x^{2} y^{2}}{8 x^{3} y^{3}} ; x, y \neq 0$
11. $\frac{6}{5 x^{2} y}+\frac{5}{10 x y^{2}} \frac{12 y+5 x}{10 x^{2} y^{2}} ; \quad x, y \neq 0$
12. $\frac{x+2}{x^{2}+4 x+4}+\frac{2}{x+2} \frac{3}{x+2} ; x \neq-2$
13. $\frac{4}{x^{2}-25}+\frac{6}{x^{2}+6 x+5}$
$\frac{10 x-26}{(x+5)(x-5)(x+1)} ; x \neq-1, \pm 5$
14. $\frac{y}{4 y+8}-\frac{1}{y^{2}+2 y}$
$\frac{y-2}{4 y} ; y \neq-2,0$

Homework...

Add or subtract. Simplify where possible. State any restrictions on the variables.
25. $\frac{3}{7 x^{2} y}+\frac{4}{21 x y^{2}}$

$$
\text { 26. } \frac{x y-y}{x-2}-\frac{y}{x+2}
$$

$$
\frac{9 y+4 x}{21 x^{2} y^{2}} ; x, y \neq 0
$$

$$
\frac{x^{2} y}{x^{2}-4} ; x \neq \pm 2
$$

27. $\frac{3}{x^{2}-x-6}+\frac{2}{x^{2}+6 x+5}$

$$
\text { 28. } \frac{6}{y^{2}+5 y}+\frac{3 y}{4 y+20}-\frac{1}{4}
$$

$$
\frac{(5 x+1)(x+3)}{(x-3)(x+2)(x+5)(x+1)} ; x \neq-5,-2,-1,3
$$

$$
\frac{2 y^{2}-5 y+24}{4 y(y+5)} ; y \neq-5,0
$$

Solving rational functions...

$$
\begin{aligned}
\frac{1}{x} & \neq \frac{x}{9} \\
9 & =x^{2} \\
\sqrt{9} & =\sqrt{x^{2}} \\
x & = \pm 3
\end{aligned}
$$

Simplest case:
One fraction equal to another

Cross Multiply
Take the square root of both sides.

This is the only case where you can Cross Multiply.

Solving rational functions...

Solve for x.

$$
\frac{35}{45}+\frac{x}{45}=\frac{55}{45}
$$

Because they all have the same denominator you just have to solve the equation $35+x=55$.

How can this be?

$$
\begin{aligned}
& 45\left(\frac{\mathbf{3 5}}{\left.\mathbf{4 5}+\frac{x}{\mathbf{4 5}}\right)}=\mathrm{45(} \mathrm{\left.\frac{} \mathrm { \mathbf {55 } }{\mathbf{4 5}}\right)} \begin{array}{rl}
\text { To get rid of the frac } \\
\text { sides by } 45 .
\end{array}\right. \\
& \mathbf{3 5 + x}=\mathbf{5 5}
\end{aligned}
$$

Solve for x .

Solving rational functions...

$$
\frac{x}{3}+\frac{x}{2}=10
$$

What do I need?
Common denominator.

$$
\frac{x}{3}\left(\frac{2}{2}\right)+\frac{x}{2}\left(\frac{3}{3}\right)=10\left(\frac{6}{6}\right)
$$

Common denominator is 6 . Think "What do 1 need to make each denominator 6?".

$$
\begin{aligned}
\frac{2 x}{6}+\frac{3 x}{6} & =\frac{60}{6} \\
2 x+3 x & =60 \\
5 x & =60 \\
x & =12
\end{aligned}
$$

Now just look at the numerators.

Solve for x .
Solving rational functions...

$$
\frac{1}{r-2}+\frac{1}{r^{2}-7 r+10}=\frac{6}{r-2}
$$

Factor

$$
\frac{1}{r-2}+\frac{1}{(r-2)(r-5)}=\frac{6}{r-2}
$$

What's missing in denominators?

$$
\begin{aligned}
& \frac{1}{r-2}\left(\frac{r-5}{r-5}\right)+\frac{1}{(r-2)(r-5)}=\frac{6}{r-2}\left(\frac{r-5}{r-5}\right) \\
& \frac{r-5}{(r-2)(r-5)}+\frac{1}{(r-2)(r-5)}=\frac{6(r-5)}{(r-2)(r-5)} \\
& r-5+1=6 r-30 \quad r=\frac{26}{5}
\end{aligned}
$$

Solve for x .
Solving rational functions...
$\frac{x-1}{x}+\frac{1}{x^{2}+2 x}=1$

Factor

$$
\frac{x-1}{x}+\frac{1}{x(x+2)}=1
$$

$$
\frac{x-1}{x}\left(\frac{x+2}{x+2}\right)+\frac{1}{x(x+2)}=1\left(\frac{x(x+2)}{x(x+2)}\right)
$$

$$
\begin{aligned}
(x-1)(x+2)+1 & =x(x+2) \\
x^{2}+x-2+1 & =x^{2}+2 x \\
x & =-1
\end{aligned}
$$

What's missing in denominators?

Solve for x .

Solving rational functions...
10. $\frac{1}{2 x+2}+\frac{5}{x^{2}-1}=\frac{1}{x-1}$

Youtry

$$
\begin{aligned}
\frac{1}{2(x+1)}\left(\frac{x-1}{x-1}\right) & +\frac{5}{(x+1)(x-1)}\left(\frac{2}{2}\right)=\frac{1}{x-1}\left(\frac{2(x+1)}{2(x+1)}\right) \\
(x-1)+10 & =2(x+1) \\
x+9 & =2 x+2 \\
x & =7
\end{aligned}
$$

Work Problems

These type of problems involve two or more people working at different rates. We're usually asked to determine how long it would take them to complete the same task if they were working together.

For example

It takes somebody 3 hours to mow the lawn behind the mobile classrooms. It takes somebody else 4 hours to mow the same lawn. How long would it take to get the lawn mowed if they worked together?

We use the following formula

$$
\frac{1}{\substack{\text { first person's time } \\ \text { alone }}}+\frac{1}{2 n d \text { person's time }_{\text {alone }}}=\frac{1}{\text { total time }}
$$

Work Problems

It takes Mr. Schmutz 3 hours to mow the lawn behind the mobile
O classrooms. It takes Mr. Mealey 4 hours to mow the same lawn. How long would it take to get the lawn mowed if they worked together?

$$
\frac{1}{\text { first person's time }_{\text {alone }}}+\frac{1}{2 \text { 2nd person's time }} \begin{gathered}
\text { alone }
\end{gathered}=\frac{1}{\text { total time }}
$$

Step 1: Put in what we know

$$
\frac{1}{3}+\frac{1}{4}=\frac{1}{\text { total time }}
$$

Step 2: Simplify the fractions. (Common denominator etc.)

$$
\frac{1}{3}+\frac{1}{4}=\frac{1}{3}\left(\frac{4}{4}\right)+\frac{1}{4}\left(\frac{3}{3}\right)=\frac{4}{12}+\frac{3}{12}=\frac{7}{12}
$$

Step 3: Solve for total time.

$$
\frac{7}{12}=\frac{1}{\text { total time }} \quad \text { total time }=\frac{12}{7}=1.7 \text { hours }
$$

Mad Lib Work Problems

dt takes \square hours to
It takes hours to
How long would it take to if they work together?

$$
\frac{1}{\text { first person's time }_{\text {alone }}}+\frac{1}{2 n d \text { person's time }} \begin{gathered}
\text { alone }
\end{gathered}=\frac{1}{\text { total time }}
$$

Step 1: Put in what we know

Step 2: Simplify the fractions. (Common denominator etc.)

Step 3: Solve for total time.

Mad Lib Work Problems

\square
It takes hours to
hours to
How long would it take to if they work together?

$$
\frac{1}{\substack{\text { first person's time } \\ \text { alone }}}+\frac{1}{2 n d \text { person's time }_{\text {alone }}}=\frac{1}{\text { total time }}
$$

Step 1: Put in what we know

Step 2: Simplify the fractions. (Common denominator etc.)

Step 3: Solve for total time.

Work Problems

Jravis can paint a barn in 4 hours. Haley has never painted a barn but
O when they worked together they finished painting an identical barn in 2.4 hours. How long would it take Haley to paint a barn alone?

Step 1: Set up the rates you know.

$$
\begin{gathered}
\frac{1}{\begin{array}{c}
\text { first person's time } \\
\text { alone }
\end{array}}+\frac{1}{2 n d \text { person's time }}=\frac{1}{\text { alone }} \begin{array}{l}
\text { total time } \\
\frac{1}{4}+\frac{1}{h}=\frac{1}{2.4}
\end{array}
\end{gathered}
$$

Step 2: Solve for the unknown rate
$\frac{1}{4}\left(\frac{\mathbf{2 . 4}}{\mathbf{2 . 4}}\right)+\frac{1}{h}=\frac{1}{2.4}\left(\frac{4}{4}\right)$
$\frac{2.4}{9.6}+\frac{1}{h}=\frac{4}{9.6}$
$\frac{1}{h}=\frac{4}{9.6}-\frac{2.4}{9.6}=\frac{1.6}{9.6}$

$$
h=\frac{9.6}{1.6}=6 \text { hours }
$$

