Identify the following:
Intervals
Increasing: $(-\infty,-1),(1, \infty)$ Decreasing: $(-1,1)$

X Intercepts: $(-2,0),(0.5,0),(1.5,0)$
Y Intercepts: (0,1)

Relative Maximum(s): ($-1,3$)
Relative Minimum(s): ($1,-1$)
Domain: $\quad(-\infty, \infty)$
Range: $\quad(-\infty, \infty)$
End Behavior: as $x \rightarrow \infty, y \rightarrow \infty$ as $x \rightarrow-\infty, y \rightarrow-\infty$

Wednesday, January 28, 2015

Most confusing Function Characteristics	
Domain	Interval of X values
Range	Interval of Y values
Increasing Interval	Interval of X values
Decreasing Interval	Interval of X values
End Behavior	Look at the far ends of the graph.
	If it's pointing up, Y is approaching positive infinity.
	If it's pointing down, Y is approaching negative infinity.

Objectives for today

Review 6 basic parent functions and be able to identify each function from an equation or a graph.

Identify vertical and horizontal function transformations from both a graph and a function equation.
Homework
Complete your parent functions worksheet
Translations on Parent Functions Review even
Any questions from last night's homework?

Introducing PARENT FUNCTIONS!

Parent functions are the simplest form of families of functions.

Function	ParentFunction
$g(x)=2 x^{2}+4$	$f(x)=x^{2}$
$g(x)=x-7$	$f(x)=x$
$g(x)=\frac{1}{3}(x-7)^{3}-1$	$f(x)=x^{3}$
$g(x)=\|x+4\|$	$f(x)=\|\mathrm{x}\|$

Constant, $f(x)=C$

Domain:

Range:
End Behavior:

Critical Points:

Increasing/Decreasing:

Linear, $f(x)=x$

Domain:

Range:
End Behavior:
Critical Points:

Increasing/Decreasing:

Quadratic, $f(x)=x^{2}$

Domain:

Range:
End Behavior:
Critical Points:
Increasing/Decreasing:

Square Root
$f(x)=\sqrt{x}$

Domain:

Range:
End Behavior:

Critical Points:

Increasing/Decreasing:

Cubic

$f(x)=x^{3}$

Domain:

Range:
End Behavior:

Critical Points:

Increasing/Decreasing:

Absolute Value $\boldsymbol{f}(\boldsymbol{x})=|\boldsymbol{x}|$

Domain:

Range:

End Behavior:

Critical Points:
Increasing/Decreasing:

When a function is shifted in any way from its parent function, it is said to be transformed. We call this a transformation of a function. Functions are typically transformed either vertically or horizontally.

Two categories of Function Transformations

1. Rigid Transformations

The basic shape of the graph is unchanged.
Vertical Shifts
Horizontal Shifts

Reflections

2. NonRigid Transformations

Cause a distortion, a change in the graph.
Stretches
Shrinks (Compressions)

Some simple transformations...

Parent Function
Quadratic $f(x)=x^{2}$

Transformed Function
Shifted
Left 3 units
Up 2 units

Transformed Function
Shifted
Right 2 units
Down 2 units

Identify the parent function and the transformations represented in the graphs.

Transformed Function
Shifted
Down 1 unit

Transformed Function
Shifted
Right 2 units
Up 3 units

So how do we represent these transformations algebraically?

Today we will focus on Rigid Transformations

Vertical Transformations

When functions are transformed on the outside of the $f(x)$ part, you move the function up and down.

Function Notation	Description of Transformation
$\mathrm{g}(x)=f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative

How do we interpret this function notation?

$$
\begin{aligned}
& \text { Let } f(x)=x^{2} \text { and } c=3 \text { then } g(x)=x^{2}+3 \\
& \text { Let } f(x)=\sqrt{x} \text { and } c=-4 \text { then } g(x)=\sqrt{x}-4 \\
& \text { Let } f(x)=2^{x} \text { and } c=7 \text { then } g(x)=2^{x}+7
\end{aligned}
$$

Let's play "What's going to happen to the parent function?"

$\boldsymbol{g}(\boldsymbol{x})$		
\boldsymbol{x}	$\boldsymbol{x}^{\mathbf{2}}+\mathbf{3}$	
\mathbf{X}	$\mathrm{f}(\mathrm{x})$	$\mathrm{g}(\mathrm{x})$
	X^{2}	$\mathrm{X}^{2}+3$
3	9	12
2	4	7
1	1	4
0	0	3
-1	1	4
-2	4	7
-3	9	12

Let's play "What's going to happen to the parent function?"

$$
g(x)=x^{3}-1
$$

X	$f(x)$	$g(X)$
3	X^{3}	$X^{3}-1$
2	8	26
1	1	0
0	0	-1
-1	-1	-2
-2	-8	-9
-3	-27	-28

Write the equation for the transformed function represented in this graph.

Parent Function? Quadratic, $f(x)=x^{2}$
Critical point that can help us? Vertex
Parent Function? Quadratic, $\boldsymbol{f}(\boldsymbol{x})=$
Critical point that can help us? Vertex

Which way did it go?
Down

By how much?
1 unit

$$
g(x)=x^{2}-1
$$

Write the equation for the transformed function represented in this graph.

Parent Function? Radical, $\boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}}$
Critical point that can help us? Intercepts

Which way did it go? Up
By how much?
2 units

$$
g(x)=\sqrt{x}+2
$$

Horizontal Translations

When functions are transformed on the inside of the " $\mathrm{f}(\mathrm{x})$ part", you move the function left and right. Notice the direction is the opposite of the sign inside the " $f(x)$ part".

Function Notation

$$
g(x)=f(x \pm c)
$$

Description of Transformation
Horizontal shift left C units if C is positive.
Horizontal shift right C units if C is negative

How do we interpret this function notation?

$$
\begin{aligned}
& \text { Let } f(x)=x^{2} \text { and } c=3 \text { then } g(x)=(x+3)^{2} \\
& \text { Let } f(x)=\sqrt{x} \text { and } c=-4 \text { then } g(x)=\sqrt{x-4} \\
& \text { Let } f(x)=2^{x} \text { and } c=7 \text { then } g(x)=2^{x+7}
\end{aligned}
$$

Let's play "What's going to happen to the parent function?"

$$
g(x)=(x-1)^{2}
$$

Let's play "What's going to happen to the parent function?"

$$
g(x)=(x+2)^{3}
$$

Write the equation for the transformed function represented in this graph.

Parent Function?
Cubic, $f(x)=x^{3}$
Critical point that can help us? Intercepts
Which way did it go?
Left

By how much?
1 unit

$$
g(x)=(x-1)^{3}
$$

Write the equation for

$$
f(x)=(x-2)^{3}+1
$$

the transformed function represented in this graph.

Parent Function?
Cubic, $f(x)=x^{3}$
Critical point that can help us? Intercepts
Which way did it go?
By how much?
Left and up
Left 2 and up 1

Reflections

When a negative sign is found on the outside of the " $f(x)$ part" the function is flipped over the \mathbf{x}-axis.

Function Notation
 Description of Transformation

$g(x)=-f(x)$
Reflected over the x-axis

How do we interpret this function notation?

$$
\begin{aligned}
& \text { Let } f(x)=x^{2} \text {, then }-f(x)=-x^{2} \\
& \text { Let } f(x)=\sqrt{x}, \text { then }-f(x)=-\sqrt{x}
\end{aligned}
$$

Flip across the x axis

$\boldsymbol{f}(\boldsymbol{x})=-\boldsymbol{x}^{\mathbf{2}}$		
X	X^{2}	$-\mathrm{X}^{2}$
3	9	-9
2	4	-4
1	1	-1
0	0	0
-1	1	-1
-2	4	-4
-3	9	-9

Flip across the y axis

$\boldsymbol{f}(\boldsymbol{x})=(-\boldsymbol{x})^{\mathbf{3}}$		
\mathbf{X}	$-\mathbf{X}$	$(-\mathrm{X})^{3}$
3	-3	-27
2	-2	-8
1	-1	-1
0	0	0
-1	1	1
-2	2	8
-3	3	27

Write the equation for the transformed function represented in this graph.

Parent Function? Radical, $\boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}}$
Critical point that can help us? Intercepts
Which way did it go? No Change
Which axis has it flipped over? X-axis

$$
f(x)=-\sqrt{x}
$$

Summary of the Rigid Transformations

Function Notation	Description of Transformation
$\mathrm{g}(x)=f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative

Function Notation	Description of Transformation
$g(x)=f(x \pm c)$	Horizontal shift left C units if C is positive.
	Horizontal shift right C units if C is negative
Function Notation	Description of Transformation
$\mathrm{g}(x)=-f(x)$	Flipped over the x -axis

Did we meet our objectives?

