Identify the following:

Intervals

Increasing: $(-\infty, -1), (1, \infty)$

Decreasing: (-1,1)

X Intercepts: (-2,0), (0.5,0), (1.5,0)

Y Intercepts: (0,1)

Relative Maximum(s): (-1,3)

Relative Minimum(s): (1,-1)

Domain: $(-\infty, \infty)$

Range: $(-\infty, \infty)$

End Behavior: $as x \rightarrow \infty, y \rightarrow \infty$

as $x \to -\infty$, $y \to -\infty$

Wednesday, January 28, 2015

So far...

Most confusing Function Characteristics		
Domain	Interval of X values	
Range	Interval of Y values	
Increasing Interval	Interval of X values	
Decreasing Interval	Interval of X values	
End Behavior	Look at the far ends of the graph.	
	If it's pointing up, Y is approaching positive infinity.	
	If it's pointing down, Y is approaching negative infinity.	

Objectives for today

Review 6 basic parent functions and be able to identify each function from an equation or a graph.

Identify vertical and horizontal function transformations from both a graph and a function equation.

Homework

Complete your parent functions worksheet

Translations on Parent Functions Review even

Any questions from last night's homework?

Introducing PARENT FUNCTIONS!

Parent functions are the simplest form of families of functions.

Function	Parent Function
$g(x) = 2x^2 + 4$	$f(x) = x^2$
g(x) = x - 7	f(x) = x
$g(x) = \frac{1}{3}(x-7)^3 - 1$	$f(x) = x^3$
g(x) = x+4	$f(x) = \mathbf{x} $

Constant, f(x) = C

Linear, f(x)=x

Quadratic, $f(x)=x^2$

Domain:

Domain:

Domain:

Range:

Range:

Range:

End Behavior:

End Behavior:

Critical Points:

End Behavior:

Critical Points:

Critical Points:

Increasing/Decreasing:

Increasing/Decreasing:

Increasing/Decreasing:

Square Root

$$f(x) = \sqrt{x}$$

Cubic

$$f(x) = x^3$$

Absolute Value

$$f(x) = |x|$$

Domain:

Domain:

Domain:

Range:

Range:

Range:

End Behavior:

End Behavior:

End Behavior:

Critical Points:

Critical Points:

Critical Points:

Increasing/Decreasing:

Increasing/Decreasing:

Increasing/Decreasing:

When a function is **shifted** in any way from its **parent function**, it is said to be **transformed**. We call this a **transformation of a function**. Functions are typically transformed either **vertically** or **horizontally**.

Two categories of Function Transformations

1. Rigid Transformations

The basic shape of the graph is unchanged.

Vertical Shifts
Horizontal Shifts
Reflections

2. NonRigid Transformations

Cause a distortion, a change in the graph.

Stretches
Shrinks (Compressions)

Some simple transformations...

Parent Function

Quadratic

f(x)=x²

Transformed Function

Shifted Left 3 units Up 2 units **Transformed Function**

Shifted Right 2 units Down 2 units

Identify the parent function and the transformations represented in the graphs.

Parent Function

Cubic f(x)=x³

Transformed Function

Shifted Down 1 unit

Transformed Function

Shifted
Right 2 units
Up 3 units

So how do we represent these transformations algebraically?

Today we will focus on Rigid Transformations

Vertical Transformations

When functions are transformed on the **outside** of the f(x) part, you move the function up and down.

Function Notation	Description of Transformation
$g(x) = f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative

How do we interpret this function notation?

Let
$$f(x) = x^2$$
 and $c = 3$ then $g(x) = x^2 + 3$

Let
$$f(x) = \sqrt{x}$$
 and $c = -4$ then $g(x) = \sqrt{x} - 4$

Let
$$f(x) = 2^x$$
 and $c = 7$ then $g(x) = 2^x + 7$

Let's play "What's going to happen to the parent function?"

$$g(x) = x^2 + 3$$

X	f(x) X ²	g(x) X ² +3
3	9	12
2	4	7
1	1	4
0	0	3
-1	1	4
-2	4	7
-3	9	12

Let's play "What's going to happen to the parent function?"

$$g(x)=x^3-1$$

X	f(x) X ³	g(x) X ³ -1
3	27	26
2	8	7
1	1	0
0	0	-1
-1	-1	-2
-2	-8	-9
-3	-27	-28

Write the equation for the transformed function represented in this graph.

 $g(x) = x^2 - 1$

Parent Function? Quadratic, $f(x) = x^2$

Critical point that can help us? Vertex

Which way did it go? **Down**

By how much? 1 unit

Write the equation for the transformed function represented in this graph.

Parent Function? Radical, $f(x) = \sqrt{x}$

Critical point that can help us? Intercepts

Which way did it go? **Up**

By how much? 2 units

Horizontal Translations

When functions are transformed on the **inside** of the "f(x) part", you move the function left and right. Notice the direction is the opposite of the sign inside the "f(x) part".

Function Notation	Description of Transformation
$g(x) = f(x \pm c)$	Horizontal shift left C units if C is positive .
	Horizontal shift right C units if C is negative

How do we interpret this function notation?

Let
$$f(x) = x^2$$
 and $c = 3$ then $g(x) = (x + 3)^2$

Let
$$f(x) = \sqrt{x}$$
 and $c = -4$ then $g(x) = \sqrt{x-4}$

Let
$$f(x) = 2^x$$
 and $c = 7$ then $g(x) = 2^{x+7}$

Let's play "What's going to happen to the parent function?"

$$g(x) = (x-1)^2$$

Let's play "What's going to happen to the parent function?"

$$g(x) = (x+2)^3$$

Write the equation for the transformed function represented in this graph.

Parent Function? Cubic, $f(x) = x^3$

Critical point that can help us? Intercepts

Which way did it go? **Left**

By how much? 1 unit

Write the equation for the transformed function represented in this graph.

Parent Function? Cubic, $f(x) = x^3$

Critical point that can help us? Intercepts

Which way did it go? **Left and up**

By how much? Left 2 and up 1

$$f(x) = (x-2)^3+1$$

Reflections

When a negative sign is found on the **outside** of the "f(x) part" the function is **flipped over the x-axis**.

Function Notation	Description of Transformation
g(x) = -f(x)	Reflected over the x-axis

How do we interpret this function notation?

Let
$$f(x) = x^2$$
, then $-f(x) = -x^2$

Let
$$f(x) = \sqrt{x}$$
, then $-f(x) = -\sqrt{x}$

Flip across the x axis

$$f(x) = -x^2$$

X	X ²	-X ²
3	9	-9
2	4	-4
1	1	-1
0	0	0
-1	1	-1
-2	4	-4
-3	9	-9

Flip across the y axis

$$f(x) = (-x)^3$$

X	-X	(-X) ³
3	-3	-27
2	-2	-8
1	-1	-1
0	0	0
-1	1	1
-2	2	8
-3	3	27

Write the equation for the transformed function represented in this graph.

Parent Function? Radical, $f(x) = \sqrt{x}$

Critical point that can help us? Intercepts

Which way did it go? **No Change**

Which axis has it flipped over? X-axis

Summary of the Rigid Transformations

Function Notation	Description of Transformation
$g(x) = f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative

Function Notation	Description of Transformation
$g(x) = f(x \pm c)$	Horizontal shift left C units if C is positive .
	Horizontal shift right C units if C is negative

Function Notation	Description of Transformation
g(x) = -f(x)	Flipped over the x-axis

Did we meet our objectives?

