\qquad Class \qquad Date \qquad
2-6
Families of Functions

Horizontal and Vertical Translations

If h and k are positive numbers, then
$g(x)=f(x)+k$ shifts the graph of $f(x)$ up k units.
$g(x)=f(x)-k$ shifts the graph of $f(x)$ down k units.
$g(x)=f(x+h)$ shifts the graph of $f(x)$ left h units.
$g(x)=f(x-h)$ shifts the graph of $f(x)$ right h units.

Problem

How can you represent each translation of $y=|x|$ graphically?

1. a. $g(x)=|x|-2 \quad$ Shift the graph of $f(x)=|x|$ down 2 units.
b. $h(x)=|x+1|$ Shift the graph of $f(x)=|x|$ left 1 unit.

$f(x)=|x| \quad g(x)=|x-3|+1$

Exercises

Identify the type of translation of $f(x)=|x|$.

1. $g(x)=|x-2|$
2. $g(x)=|x|+1$
3. $g(x)=|x|-3$
4. $g(x)=|x+3|$

Graph each translation of $f(x)=|x|$.
5. $g(x)=|x-1|-5$
6. $g(x)=|x+4|+2$
\qquad
\qquad Date \qquad
(continued)
2-6
Families of Functions

Reflection, Stretching, and Compression

If h and k are positive numbers, then
$g(x)=-\boldsymbol{f}(x)$ reflects the graph of $f(x)$ in the \boldsymbol{x}-axis.
$g(x)=f(-\boldsymbol{x})$ reflects the graph of $f(x)$ in the \boldsymbol{y}-axis.
$g(x)=a f(x), a>1$, is a vertical stretch of the graph of $f(x)$.
$g(x)=a f(x), 0<a<1$, is a vertical compression the graph of $f(x)$.

Problem

What transformations change the graph of $f(x)$ to $g(x)$?

$$
f(x)=5 x \quad g(x)=-3(5 x)
$$

There are two transformations.
First transformation: The graph of $y=3(5 x)$ is the graph of $f(x)=5 x$ stretched vertically by a factor of 3 because $a=3$ and $a>1$.

Second transformation: The graph of $g(x)=-3(5 x)$ is the graph of $y=$ $3 f(5 x)$ reflected in the x-axis because the sign of $g(x)$ has changed.

So, the graph of $g(x)$ is the graph of $f(x)$ stretched vertically by a factor of 3 and reflected over the x-axis.

Exercises

Describe the transformations of $f(x)$ that produce $g(x)$.
7. $f(x)=-5 x$
8. $f(x)=x$
$g(x)=x$

$$
g(x)=\frac{1}{4} x+3
$$

Graph $f(x)$ and $g(x)$ on the same coordinate plane.
9. $f(x)=2 x$

$$
g(x)=-(2 x-2)
$$

10. $f(x)=x^{2}$
$g(x)=2\left(x^{2}-3\right)$
