Sunday, February 8, 2015

1. $\sqrt{-16 x^{2}}$
2. $\sqrt{-72 x y^{5}}$
3. $(1+3 i)+(2+i)$
4. $(7+4 i)(2-3 i)$

Objectives Review Factoring Quadratic Equations

Solve Quadratic Equations using factoring and graphing techniques

Homework Packet Page 8 all
Packet Page 9 all
Packet Page 10 Sections I and II even only

How about a Quiz on Complex numbers?

Factoring is basically FOIL (or the box method) in reverse

$$
(x+2)(x+7)
$$

When we multiply these factors we end up with

$$
x^{2}+9 x+14
$$

Our objective is to go from Standard form to Factored Form

$$
x^{2}+11 x+24
$$

Factors of 24	Sum of the factors
$1 \cdot 24$	$1+24=25$
$2 \cdot 12$	$2+12=14$
$3 \cdot 8$	$3+8=11$
$4 \cdot 6$	$4+6=10$

So which factor pair becomes a part of our pair of factors?

$$
(x+\underline{3})(x+\underline{8})
$$

Our objective is to go from Standard form to Factored Form

$$
x^{2}-11 x+24
$$

Factors of 24	Sum of the factors
$(-1)(-24)$	$-1-24=-25$
$(-2)(-12)$	$-2-12=-14$
$(-3)(-8)$	$-3-8=-11$
$(-4)(-6)$	$-4-6=-10$

So which factor pair becomes a part of our pair of factors?

$$
(x-\underline{3})(x-\underline{8})
$$

SWING Method for $\boldsymbol{a} \neq \mathbf{1}$

Find factors of $a \cdot c$ that sum up to b.

Factors of $a \cdot c=-42$	Sum of the factors
$1(-42)$	$1-42=-41$
$2(-21)$	$2-21=-19$
$3(-14)$	$3-14=-11$
$6(-7)$	$6-7=-1$

$$
6 x^{2}-11 x-7
$$

Set up the function factors with the factors identified in the previous step. Divide each factor by the value of a and simplify.

Swing the denominator of any fractions remaining in front of the x term in the factor.

$$
\begin{aligned}
& \left(x+\frac{3}{6}\right)\left(x+\frac{-14}{6}\right) \\
& \left(x+\frac{1}{2}\right)\left(x-\frac{7}{3}\right)
\end{aligned}
$$

$(2 x+1)(3 x-7)$

In your packet, page 8, work on the example problem $10 x^{2}+13 x-3$ If you finish, work on problems 1-3 on that page.

Difference of Squares (see page 3 in your packet)

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

$$
4 x^{2}-36=(2 x+6)(2 x-6)
$$

This one, you will need to be familiar with. Differences of squares show up a lot.

Press $2^{\text {nd }}$ TRACE and select 5:intersect

The cursor will be positioned on y_{1}. Press enter to select this function.

The cursor will jump to y_{2} which is the x axis. Press enter to select this function.
CHLEDLHTE

You will be asked for a guess. Just press enter again.

The intersection is one of the solutions. In this case it's $x=-2$

Now we repeat the process to find the other solution.

So our two solutions are $x=-2$ and $x=3$

Just for grins, verify the solutions using the quadratic formula.

$$
x^{2}-x-6
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{1 \pm \sqrt{1-4(1)(-6)}}{2}
$$

$$
x=\frac{1 \pm \sqrt{25}}{2}=\frac{1 \pm 5}{2}
$$

$$
x=\frac{6}{2}=3
$$

$$
x=\frac{-4}{2}=-2
$$

