# Simplify the following

#### 1. $\sqrt{-16x^2}$

2.  $\sqrt{-72xy^5}$ 

#### 3. (1+3i) + (2+i)

4. (7 + 4i)(2 - 3i)

# Sunday, February 8, 2015

**Objectives** Review Factoring Quadratic Equations

Solve Quadratic Equations using factoring and graphing techniques

HomeworkPacket Page 8 allPacket Page 9 allPacket Page 10 Sections I and II even only

# How about a Quiz on Complex numbers?

#### Factoring is basically FOIL (or the box method) in reverse

(x+2)(x+7)

When we multiply these factors we end up with

 $x^2 + 9x + 14$ 



#### Our objective is to go from Standard form to Factored Form

$$x^2 + 11x + 24$$

| Factors of<br>24 | Sum of the<br>factors |
|------------------|-----------------------|
| 1.24             | 1 + 24 =25            |
| 2.12             | 2 + 12 =14            |
| 3.8              | 3 + 8 =11             |
| 4.6              | 4 + 6 =10             |

So which factor pair becomes a part of our pair of factors?

 $(x + \underline{3})(x + \underline{8})$ 

#### Our objective is to go from Standard form to Factored Form

$$x^2 - 11x + 24$$

| Factors of<br>24 | Sum of the<br>factors |
|------------------|-----------------------|
| (-1)(-24)        | -1 - 24 =-25          |
| (-2)(-12)        | -2 - 12 =-14          |
| (-3)(-8)         | -3 - 8 =-11           |
| (-4)(-6)         | -4 - 6 =-10           |

So which factor pair becomes a part of our pair of factors?

$$(x - \underline{3})(x - \underline{8})$$

#### Find factors of $a \cdot c$ that sum up to b.

| Factors of<br><u>a · c = -42</u> | Sum of the<br>factors |
|----------------------------------|-----------------------|
| 1(-42)                           | 1 - 42 = -41          |
| 2(-21)                           | 2 - 21 = -19          |
| 3(-14)                           | 3 - 14 = -11          |
| 6(-7)                            | 6 - 7 = -1            |

Set up the function factors with the factors identified in the previous step. Divide each factor by the value of a and simplify.

Swing the denominator of any fractions remaining in front of the x term in the factor.

## SWING Method for $a \neq 1$

$$6x^2 - 11x - 7$$



(2x+1)(3x-7)

In your packet, page 8, work on the example problem  $10x^2 + 13x - 3$ If you finish, work on problems 1-3 on that page.

### **Difference of Squares (see page 3 in your packet)**

$$a^2 - b^2 = (a + b)(a - b)$$

 $4x^2 - 36 = (2x + 6)(2x - 6)$ 

This one, you will need to be familiar with. Differences of squares show up a lot.

## **Factor the following**

 $1.x^2 - 49$ 

 $2.16x^2 - 9y^2$ 

 $3.32x^2 - 18y^2$ 

# You can use the graphing calculator to find the solutions to a quadratic equation.



Enter the equation  $x^2 - x - 6$  into  $y_1$ 

Press the graph button.

How many solutions? Type?



Enter 0 in  $y_2$ 





# Press 2<sup>nd</sup> TRACE and select 5:intersect

The cursor will be positioned on  $y_1$ . Press enter to select this function.

The cursor will jump to  $y_2$  which is the x axis. Press enter to select this function.









You will be asked for a guess. Just press enter again.



The intersection is one of the solutions. In this case it's x = -2



Now we repeat the process to find the other solution.

# 2<sup>nd</sup> TRACE intersection

Move the cursor to the other side of the vertex. Then press enter.

Press enter twice. This is the second solution to this equation.





ピョウ

Second curve?

# So our two solutions are x = -2 and x = 3



1 1

Just for grins, verify the solutions using the quadratic formula.  $x^2 - x - 6$ 

$$x = \frac{1 \pm \sqrt{1 - 4(1)(-6)}}{2}$$
$$x = \frac{1 \pm \sqrt{25}}{2} = \frac{1 \pm 5}{2}$$
$$x = \frac{6}{2} = 3$$
$$x = \frac{-4}{2} = -2$$

1(1)(

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$