WARM UP

1. Put the equation $m=t^{r}$ in logarithmic form.
2. Write the expression $\log x-3 \log y+5 \log z$ as a single \log statement.
3. Find the inverse of the function $y=3 x^{2}+7$
4. Find the inverse of the function $y=7^{x+2}+5$

Objectives

- Construct the Unit Circle
- Use the Unit Circle to find trig values for the common angles on the circle.

Homework

- Complete the Unit Circle Worksheets

Homework
 Review

$$
\begin{aligned}
& \text { 1. }(-3,4) \\
& \sin \theta=\frac{4}{5}, \cos \theta=-\frac{3}{5}, \tan \theta=-\frac{4}{3}, \\
& \csc \theta=\frac{5}{4}, \sec \theta=-\frac{5}{3}, \cot \theta=-\frac{3}{4}
\end{aligned}
$$

3. $(-2,-1)$

$$
\begin{aligned}
& \sin \theta=-\frac{\sqrt{5}}{5}, \cos \theta=-\frac{2 \sqrt{5}}{5}, \tan \theta=\frac{1}{2^{\prime}} \\
& \csc \theta=-\sqrt{5}, \sec \theta=-\frac{\sqrt{5}}{2}, \cot \theta=2
\end{aligned}
$$

2. $(12,-5)$

$$
\begin{aligned}
& \sin \theta=-\frac{5}{13^{\prime}}, \cos \theta=\frac{12}{13}, \tan \theta=-\frac{5}{12}, \\
& \csc \theta=-\frac{13}{5}, \sec \theta=\frac{13}{12^{\prime}}, \cot \theta=-\frac{12}{5}
\end{aligned}
$$

4. $(\sqrt{5}, 2)$

$$
\begin{aligned}
& \sin \theta=\frac{2}{3}, \cos \theta=\frac{\sqrt{5}}{3}, \tan \theta=\frac{2 \sqrt{5}}{5} \\
& \csc \theta=\frac{3}{2}, \sec \theta=\frac{3 \sqrt{5}}{5}, \cot \theta=\frac{\sqrt{5}}{2}
\end{aligned}
$$

5. A hiker is standing on one bank of a river. A tree stands on the opposite bank, which is 750 ft away. A line from the top of the tree to the ground at the hiker's feet makes an angle of 12° with the ground. How tall is the tree? about 159 ft

Homework Review

7. In $\triangle A B C, \angle C$ is a right angle and $\tan A=\frac{2}{3}$. Draw a diagram and find each value in fraction form and in decimal form. Round your answer to the nearest tenth, if necessary.
a. $\frac{\cos A}{\frac{3 \sqrt{13}}{13} ; 0.8}$
b. $\tan B$
$\frac{3}{2} ; 1.5$
c. $\sin A$
$\frac{2 \sqrt{13}}{13} ; 0.6$
d. $\cot B$
$\frac{2}{3} ; 0.7$
e. $\sec A$
$\frac{\sqrt{13}}{3} ; 1.2$
f. $\csc B$ $\frac{\sqrt{13}}{3} ; 1.2$
8.

11. $f=8, e=15$

$$
d=17 ; \angle F=28.1^{\circ}
$$

12. $f=1, e=2$
13. $f=2, e=1$

$$
d=2.2 ; \angle F=26.6^{\circ} ;
$$

$$
d=2.2 ; \angle F=63.4^{\circ}
$$

$$
\angle E=61.9^{\circ}
$$

$$
\angle E=63.4^{\circ}
$$

$$
\angle E=26.6^{\circ}
$$

Homework
 Review

14. $f=1, d=500$
$e=500 ; \angle F=0.1^{\circ}$; $\angle E=89.9^{\circ}$
15. $d=21, e=8$
$f=19.4 ; \angle F=67.6^{\circ}$; $\angle E=22.4^{\circ}$
16. $e=5, f=1$
$d=5.1 ; \angle F=11.3^{\circ}$; $\angle E=78.7^{\circ}$
17. You are designing several access ramps. What angle would each ramp make with the ground, to the nearest 0.1° ?
a. 20 ft long, rises 16 in . 3.8°
b. 8 ft long, rises 8 in .
c. 12 ft long, rises 6 in . 4.8° 2.4°
d. 30 ft long, rises 32 in . 5.1°
e. 4 ft long, rises 6 in . 7.1°
f. 6 ft long, rises 14 in . 11.0°

Sketch a right triangle with θ as the measure of one acute angle. Find the other five trigonometric ratios of $\boldsymbol{\theta}$.
18. $\cos \theta=\frac{4}{11} \sin \theta=\frac{\sqrt{105}}{11}, \tan \theta=\frac{\sqrt{105}}{4}$, $\cot \theta=\frac{4 \sqrt{105}}{105}, \csc \theta=\frac{11 \sqrt{105}}{105}, \sec \theta=\frac{11}{4}$
20. $\csc \theta=\frac{14}{6} \quad \sin \theta=\frac{3}{7}, \cos \theta=\frac{2 \sqrt{10}}{7}$, $\tan \theta=\frac{3 \sqrt{10}}{20}, \cot \theta=\frac{2 \sqrt{10}}{3}, \sec \theta=\frac{7 \sqrt{10}}{20}$
22. $\sin \theta=0.45 \cos \theta \approx 0.893, \tan \theta \approx 0.504$, $\cot \theta \approx 1.98, \csc \theta \approx 2.22, \sec \theta \approx 1.12$
19. $\sin \theta=\frac{7}{12} \quad \cos \theta=\frac{\sqrt{95}}{12}, \tan \theta=\frac{7 \sqrt{95}}{95}$, $\cot \theta=\frac{\sqrt{95}}{7}, \csc \theta=\frac{12}{7}, \sec \theta=\frac{12 \sqrt{95}}{95}$
21. $\cos \theta=\frac{9}{16} \quad \sin \theta=\frac{5 \sqrt{7}}{16}, \tan \theta=\frac{5 \sqrt{7}}{9}$, $\cot \theta=\frac{9 \sqrt{7}}{35}, \csc \theta=\frac{16 \sqrt{7}}{35}, \sec \theta=\frac{\mathbf{1 6}}{9}$
23. $\sec \theta=7.6 \sin \theta \approx 0.991, \cos \theta \approx 0.132$, $\tan \theta \approx 7.53, \csc \theta \approx 1.01, \cot \theta \approx 0.133$

$30^{\circ}-60^{\circ}-90^{\circ}$ Triangles revisited

Start with an equilateral triangle of side length 1.
Drop an angle bisector and we have two 30-60-90 triangles

To find the length of x , use the Pythagorean theorem.

$$
a^{2}+b^{2}=c^{2}
$$

$30^{\circ}-60^{\circ}-90^{\circ}$ Triangles revisited

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
x^{2}+\left(\frac{1}{2}\right)^{2} & =1^{2} \\
x^{2}+\frac{1}{4} & =1 \\
x^{2} & =1-\frac{1}{4} \\
x^{2} & =\frac{3}{4} \\
x & =\frac{\sqrt{3}}{2}
\end{aligned}
$$

$45^{\circ}-45^{\circ}-90^{\circ}$ Isosceles Right Triangle Revisited

Use the Pythagorean Theorem to find x again.

$$
\begin{aligned}
x^{2}+x^{2} & =1^{2} \\
2 x^{2} & =1 \\
x^{2} & =\frac{1}{2} \\
x & =\frac{1}{\sqrt{2}} \\
x & =\frac{1}{\sqrt{2}}\left(\frac{\sqrt{2}}{\sqrt{2}}\right)=\frac{\sqrt{2}}{2}
\end{aligned}
$$

It's a circle

The radius is 1

It lives on the x / y coordinate plane.

Its center is the origin

Angles are measured from the origin.

The initial side of angles starts at the x axis.

Positive angles sweep in a counter clockwise direction.

Negative angles sweep in a clockwise direction.

The Unit Circle

Let's start filling in the Unit Circle.

Start with the degree measures...

We focus on the common angles, 30, 45, 60 and 90 .

Radian Measure
Another way to measure angles is in terms of the circumference.

Since the radius of this circle is 1 , the circumference is equal to 2π

Converting between radian and degree measure

To convert a degree measure to π a radian measure $\overline{180}$ multiply by

Convert 60° to radians.

$$
60\left(\frac{\pi}{180}\right)=\frac{\pi}{3}
$$

To convert a radian measure to a degree measure multiply by
π

Convert $\frac{5 \pi}{3}$ radians to degrees.

$$
\frac{5 \pi}{3}\left(\frac{180}{\pi}\right)=300
$$

Sine and Cosine on the Unit Circle

Remember the
30-60-90 Triangle

Sine and Cosine on the Unit Circle

Sine and Cosine on the Unit Circle

Remember the
30-60-90 Triangle

Sine and Cosine on the Unit Circle

Remember the radius on the unit circle is equal to 1 .

Therefore the cosine of any angle on the unit circle is equal to the x coordiante of the point on the circle.

Sine is equal to the y coordinate of the point on the circle.
(cos,sin)

Sine and Cosine on the Unit Circle

Find the cosine of 60°

$$
\cos (60)=\frac{1}{2}
$$

Find the sine of 60°

$$
\sin (60)=\frac{\sqrt{3}}{2}
$$

Find the sine of $\frac{\pi}{4}$

$$
\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}
$$

TANGENT on the Unit Circle

$$
\operatorname{Tan}=\frac{\operatorname{Sin}}{\operatorname{Cos}}
$$

Find the tangent of 45°

$$
\tan 45=\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1
$$

Your completed unit circle should look like this...

Use your unit circle to find the following

1) $\sin \left(90^{\circ}\right)=$
2) $\cos \left(\frac{\pi}{4}\right)=$
3) $\sin \left(\frac{5 \pi}{4}\right)=$
4) $\cos 135^{\circ}=$
5) $\tan \left(\frac{5 \pi}{4}\right)=$
6) $\tan \left(180^{\circ}\right)=$
(0)
