WARM UP

Tuesday, November 11, 2014
1.) Find the value of x.

2.) Find the value of x

$$
\text { 3.) Convert } f(x)=\log _{7}(2 x+3)
$$

Objectives

Use triangle congruency theorems to determine if triangles are congruent.

Prove by two column proof that two triangles are congruent using the triangle congruency theorems.

Homework

Triangle packet, sections I and II, all problems.

Grading Policy for this unit.

Warm-ups will be collected daily and accumulated into one warm-up grade for the unit.

Homework is due the day after it is assigned. A 10 point reduction will be assessed for each day late.

Your 7 homework assignments will be averaged into a single homework grade for the entire unit.

ALL Make Up Tests for the Log and Exponents Unit must be completed by Friday November $14^{\text {th }}$. No exceptions.

ALL Retakes for the Log and Exponents Unit must be completed by Friday November $21^{\text {st }}$.

No exceptions.

Sign Up on the Make-up/Retake Log with the date you intend to take the test.

You MUST bring your test corrections with you to be eligible for a retake.

- Homework questions?

2. Given: $m \angle 1+m \angle 2=90$

Conclusion: $m \angle 1=90-m \angle 2$
Subtraction Property
4. Given: $q-x=r$

Conclusion: $4(q-x)=4 r$ Multiplication Property
6. Given: $C D=A F-2 C D$

Conclusion: $3 C D=A F$
Addition Property
8. Given: $m \angle A O X=2 m \angle X O B$

$$
2 m \angle X O B=140
$$

Conclusion: $m \angle A O X=140$ Substitution Prop.
10. $\overline{R T} \cong \overline{R T} \quad \mathrm{~b}$
11. If $\angle Y E R \cong \angle I O P$ f and $\angle I O P \cong \angle W X Z$ then $\angle Y E R \cong \angle W X Z$
12. If $\overline{P Q} \cong \overline{M N}$ d then $\overline{M N} \cong \overline{P Q}$
13. If $X T=Y Z$ e
and $Y Z=U P$
then $X T=U P$
14. $m \angle l=m \angle 1$ a
15. If $m \angle R Q S=m \angle T E F \quad \mathrm{c}$ then $m \angle T E F=m \angle R Q S$

- Homework questions?

2.

11
3.

4.

5. Given: $\angle 2$ is complementary to $\angle 3$.
6. Given: $\angle A Y Z \cong \angle B Y W$

$\angle 1 \cong \angle 3 ;$
Congruent Complements

Homework questions?

 Use the diagram at the right to answer Exercises 16 and 17. Decidewhether the angles are alternate interior angles, same-side interior
angles, corresponding, or alternate exterior angles.
$\begin{array}{ll}\text { 16. } \angle 1 \text { and } \angle 5 & \begin{array}{l}\text { 17. } \angle 4 \text { and } \angle 6 \\ \text { alternate exterior angles }\end{array}\end{array}$
2.
4. Supply the missing reasons in the two-column proof. Given: $g\|h, i\| j$
Prove: $\angle 1$ is supplementary to $\angle 16$.

Statements

1) $\angle 1 \cong \angle 3$
2) $g\|h ; i\| j$
3) $\angle 3 \cong \angle 11$
4) $\angle 11$ and $\angle 16$ are supplementary.
5) $\angle 1$ and $\angle 16$ are supplementary.
$\angle 2$; vert. A are $\cong ; \angle 5$; alt. int. \angle are $\approx ; \angle 7$; corresp. 4 are \cong

Homework questions?

7.

$\overline{W X} \| \overline{Y Z}$ because the \cong果 are alt. int. 果.

7; 42; 138

Homework
Find $m \angle 1$. questions?

2.

3.

4.

5.

6.

Algebra Find the value of each variable.

9.

- Homework
questions?

10.

exterior: $\angle 4$
interior: $\angle 1, \angle 2$
11.

exterior: $\angle N O P$
interior: $\angle O M N, \angle M N O$

Find the measure of the exterior angle.

14.

12.

exterior: LJLM interior: $\angle J K L, \angle U K$
15.

Proving Triangles are Congruent

Two triangles are congruent if all three of their angles are of equal measure and each of their corresponding sides have equal length.

Another way to say that is all their corresponding parts are equal.

How many corresponding parts does a pair of triangles have?

Six, 3 sides and 3 angles.

Proving Triangles are Congruent

The 6 facts for our congruent triangles example:

$$
\begin{array}{ll}
\overline{A B} \cong \overline{D E} & \Varangle A \cong \Varangle D \\
\overline{B C} \cong \overline{E F} & \Varangle B \cong \Varangle E \\
\overline{A C} \cong \overline{D F} & \Varangle C \cong \Varangle F
\end{array}
$$

Because each of the six corresponding parts are equal, we can say that triangle ABC is congruent to triangle DEF.

But I really don't what to prove six things every time I want to prove two triangles are congruent! :

Good news!

We have tools that make the proof process quicker and more efficient.
These tools are called the Triangle Congruency Theorems
Thanks to these theorems, you only have to prove three corresponding parts are congruent to show that two triangles are congruent.

Not awful new!

You have to memorize the Triangle Congruency Theorems

THE THEOREMS

SSS - Side Side Side
If three sides of one triangle are congruent to three sides of another triangle, then the two triangles are congruent.

Since $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $\overline{B C} \cong \overline{E F}$ we can say $\triangle A B C \cong \triangle D E F$ by $\mathbf{S S S}$.

THE THEOREMS

SAS - Side Angle Side If two sides and the included angle are congruent to two sides and the included angle of another triangle, then the triangles are congruent to each other.

Since $\overline{A C} \cong \overline{O D}, \angle C \cong \angle D$, and $\overline{C T} \cong \overline{D G}$ we can say $\triangle A B C \cong \triangle D E F$ by SAS.

If the angles that are congruent are not BETWEEN the two sides, you DO NOT have SAS. You have ASS!

This is ASS!

THE THEOREMS

ASA - Angle Side Angle If two angles and the included side are congruent to two angles and the included side of another triangle, then the triangles are congruent to each other.

Since $\angle R \cong \angle U, \overline{R Q} \cong \overline{U T}, \angle Q \cong \angle T$ we can say $\triangle R Q S \cong \triangle U T V$ by ASA.

THE THEOREMS

AAS - Angle Angle Side It's really just a form of ASA. Think about it. If we know two corresponding angles of a triangle are congruent, the third angle has to be congruent!

Since $\angle J \cong \angle M, \angle I \cong \angle L$ and $\overline{I H} \cong \overline{L K}$ we can say $\Delta H I J \cong \Delta K L M$ by AAS.

THE THEOREMS

HL - Hypotenuse Leg
This is a special case for right triangles and is a shortcut for the SSS theorem. Think Pythagorean Theorem. If you know one side and the hypotenuse, you can the third side.

Since $\overline{A C} \cong \overline{D F}$ and $\overline{B C} \cong \overline{E F}$ we can say $\triangle A B C \cong \triangle D E F$ by $\mathbf{H L}$.

So you have 5 theorems to remember...

Which theorem can we use to prove each pair of triangles are congruent?

Which theorem can

 we use to prove each pair of triangles are congruent?
21.

Now let's think in terms of a two column proof.
Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}, \overline{\mathrm{BC}} \cong \overline{\mathrm{EF}}$, and $\angle \mathrm{B} \cong \angle \mathrm{E}$

Your Claim	Why you can make your claim
$\overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}$	Given

$$
\overline{\mathrm{BC}} \cong \overline{\mathrm{EF}},
$$

Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ $\angle B \cong \angle E$

$\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
Your last statement
should always be what you're trying to prove.

Your first
statements should always reflect what you are given.
Given

SAS

In this case there was nothing to add to the proof!

Most of the time, you have to look for properties you can use to make your case.
i. Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{ED}}, \angle \mathrm{A} \cong \angle \mathrm{D}$

Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DCE}$

Your Claim	Why you can make your claim
$\overline{\mathrm{AB}} \cong \overline{\mathrm{ED}}_{1}$	Given
$\angle \mathrm{A} \cong \angle \mathrm{D}$	Given
$\angle B C A \cong \angle D C A$	Vertical Angles are congruent

I have an angle and a side, which theorems can I potentially use?

$$
S \text { 会, } A
$$

I have no information about another side length.

$$
\triangle \mathrm{ABC} \cong \triangle \mathrm{DCE}
$$

AAS

Can't make any assumptions about angle B.

Perfect practice makes perfect!

Work you your triangles packet. It is due tomorrow.

If you finish it before you leave, you can accumulate credits for a 2 point addition to your unit test grade.

You'll need 5 credits for 2 points.

