ㅇ Use the following graphs to determine requested information

Zeros:

Vertex:

Axis of Symmetry:

Roots :

Maximum:

Axis of Symmetry:

What do we know about parabolas that can help up?

Objectives
 Solve quadratic equations using factoring.

Solve quadratic equations using a graphing calculator.

Homework Packet page 49: 2-12 even
Packet page 50: 14-22 even

Exercises

Factor each expression.

1. $x^{2}+6 x+8(x+4)(x+2)$
2. $x^{2}-4 x+3(x-3)(x-1)$
3. $2 x^{2}-6 x+42(x-2)(x-1)$
4. $2 x^{2}-11 x+5(2 x-1)(x-5)$
5. $2 x^{2}-7 x-4(2 x+1)(x-4)$
6. $4 x^{2}+16 x+15(2 x+5)(2 x+3)$
7. $x^{2}-5 x-14(x+2)(x-7)$
8. $7 x^{2}-19 x-6(7 x+2)(x-3)$
9. $x^{2}-x-72(x-9)(x+8)$
10. $2 x^{2}+9 x+7(2 x+7)(x+1)$
11. $x^{2}+12 x+32(x+4)(x+8)$
12. $4 x^{2}-28 x+49(2 x-7)(2 x-7)$
13. $x^{2}-3 x-10(x-5)(x+2)$
14. $2 x^{2}+9 x+4(2 x+1)(x+4)$
15. $9 x^{2}-6 x+1(3 x-1)(3 x-1)$
16. $x^{2}-10 x+9(x-1)(x-9)$
17. $x^{2}+4 x-12(x+6)(x-2)$
18. $x^{2}+7 x+10(x+5)(x+2)$
19. $x^{2}-8 x+12(x-6)(x-2)$
20. $2 x^{2}-5 x-3(2 x+1)(x-3)$
21. $x^{2}-6 x+5(x-1)(x-5)$
22. $3 x^{2}+2 x-8(3 x-4)(x+2)$

Exercises

Factor each expression.

23. $x^{2}-12 x+36$ $(x-6)^{2}$
24. $x^{2}+30 x+225$
$(x+15)^{2}$
25. $9 x^{2}-12 x+4$

$$
(3 x-2)^{2}
$$

26. $x^{2}-64$
$(x+8)(x-8)$
27. $9 x^{2}-42 x+49$
$(3 x-7)^{2}$
28. $27 x^{2}-12$ $3(3 x+2)(3 x-2)$
29. $49 x^{2}+42 x+9$

$$
(7 x+3)^{2}
$$

32. $9 x^{2}-16$
$(3 x+4)(3 x-4)$
33. $\begin{aligned} & 125 x^{2}-100 x+20 \\ & 5(5 x-2)^{2}\end{aligned}$
34. $8 x^{2}-18$
$2(2 x+3)(2 x-3)$
35. $-x^{2}+196$

$$
-(x+14)(x-14)
$$

28. $25 x^{2}-1$

$$
(5 x+1)(5 x-1)
$$

31. $16 x^{2}-32 x+16$

$$
16(x-1)^{2}
$$

34. $81 x^{2}+126 x+49$

$$
(9 x+7)^{2}
$$

37. $-16 x^{2}-24 x-9$

$$
-(4 x+3)^{2}
$$

What exactly does that mean?

When we solve quadratic equations, we're looking for the zeros of the function.

The zeros of a quadratic equation are found at x values that cause the function value (or y) to equal 0 .

The zeros of the quadratic function are also referred to as

If $3 x=0$, what is the value of x ?

When two things are multiplied together and the answer is zero, one or both of the things has to equal zero.

In this case x has to equal zero.

Zero Product Property

If $a b=0$ then $a=0$ or $b=0$

To solve this equation, we factor and find what values of x will make each factor equal to zero.

$$
\begin{array}{r}
x^{2}-5 x+6=0 \\
(x-2)(x-3)=0
\end{array}
$$

Set each factor equal to zero and solve

$$
\left.\begin{array}{rlr}
(x-2)=0 & (x-3) & =0 \\
x & =2 & x
\end{array}\right)=3
$$

Solve the quadratic equation $x^{2}-10 x+16=0$

$$
(x-8)(x-2)=0, x=8 \text { and } x=2
$$

Solve the quadratic equation $2 x^{2}=7 x+4$

The equation must be equal to zero to solve.
Move all the terms to one side.

$$
\text { The equation becomes } 2 x^{2}-7 x-4=0
$$

Now factor and solve.

$$
(x-4)(2 x+1)=0, x=4 \text { and } x=-\frac{1}{2}
$$

$\frac{5}{\circ}$ You do problems 3 and 11 on packet page 49.

Some equations are too difficult to solve by factoring.

In this case we will use the graphing calculator to solve.

Solve the quadratic equation $3 x^{2}+31 x+36=0$

1. Enter the equation into $Y=$

2. Press [Graph]

3. Find second zero

Solve $2 x^{2}+7 x=15$

Think about what you'll enter into $\mathrm{y}=$

You do problems 16 and 18 on packet page 50.

A little radical review

Properties Properties of Exponents

- $a^{0}=1, a \neq 0$
- $\frac{a^{m}}{a^{n}}=a^{m-n}$
- $a^{-n}=\frac{1}{a^{n}}$
- $(a b)^{n}=a^{n} b^{n}$
- $\left(a^{m}\right)^{n}=a^{m n}$
- $a^{m} \cdot a^{n}=a^{m+n}$
- $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$

Example

Simplify and rewrite each expression using only positive exponents.
a. $\left(5 a^{3}\right)\left(-3 a^{-4}\right)$
b. $\left(-4 x^{-3} y^{5}\right)^{2}$

Essential Understanding Corresponding to every power, there is a root. For example, just as there are squares (second powers), there are square roots. Just as there are cubes (third powers), there are cube roots, and so on.

$$
\begin{array}{ll}
5^{2}=25 & 5 \text { is a square root of } 25 . \\
5^{3}=125 & 5 \text { is a cube root of } 125 . \\
5^{4}=625 & 5 \text { is a fourth root of } 625 . \\
5^{5}=3125 & 5 \text { is a fifth root of } 3125 .
\end{array}
$$

This pattern suggests a definition of an nth root.

Property nth Roots of nth Powers

For any real number $a, \sqrt[n]{a^{n}}=\left\{\begin{array}{l}a \text { if } n \text { is odd } \\ |a| \text { if } n \text { is even }\end{array}\right.$

It is easy to overlook this rule for simplifying radicals. It is particularly important that you remember it when the radicand contains a variable expression. You must include the absolute value when n is even, and you must omit it when n is odd.

What is a simpler form of each radical expression?

(A) $\sqrt{16 x^{8}}$

$$
\sqrt{16 x^{8}}=\sqrt{4^{2}\left(x^{4}\right)^{2}}=\sqrt{\left(4 x^{4}\right)^{2}}=\left|4 x^{4}\right|=4 x^{4}
$$

You need to include absolute value symbols because the index of a square root is 2 , which is even. However, $\left|4 x^{4}\right|=4 x^{4}$ because x^{4} is always nonnegative.

B $\sqrt[3]{a^{6} b^{9}}$

C $\sqrt[4]{x^{8} y^{12}}$

Property Combining Radical Expressions: Products

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, then $\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}$.

Can you simplify the product of the radical expressions? Explain.
A $\sqrt[3]{6} \cdot \sqrt{2}$

B $\sqrt[3]{-4} \cdot \sqrt[3]{2}$

"ImPerfect" Squares

If you are commanded to find $\sqrt[2]{12}$

More "ImPerfect" Squares

If you are commanded to find $\sqrt[4]{y^{5}}$

More "ImPerfect" Squares

If you are commanded to find $\sqrt[3]{x^{9} y^{4}}$

Find the simplest form of $\sqrt[3]{54 x^{5}}$

Property Combining Radical Expressions: Quotients

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and $b \neq 0$, then $\sqrt[n]{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}$.

What is the simplest form of the quotient?
$\frac{\sqrt{18 x^{5}}}{\sqrt{2 x^{3}}}$

$$
\frac{\sqrt[3]{162 y^{5}}}{\sqrt[3]{3 y^{2}}}
$$

Property Combining Radical Expressions: Sums and Differences

Use the Distributive Property to add or subtract like radicals.

$$
a \sqrt[n]{x}+b \sqrt[n]{x}=(a+b) \sqrt[n]{x} \quad a \sqrt[n]{x}-b \sqrt[n]{x}=(a-b) \sqrt[n]{x}
$$

What is the simplified form of each expression?
A $3 \sqrt{5 x}-2 \sqrt{5 x}$

B $6 x^{2} \sqrt{7}+4 x \sqrt{5}$

C $12 \sqrt[3]{7 x y}-8 \sqrt[5]{7 x y}$

Problem 3 Simplifying Before Adding or Subtracting
What is the simplest form of the expression? $\sqrt{12}+\sqrt{75}-\sqrt{3}$

Conjugates are expressions, like $\sqrt{a}+\sqrt{b}$ and $\sqrt{a}-\sqrt{b}$, that differ only in the signs of the second terms. When a and b are rational numbers, the product of two radical conjugates is a rational number.

So why do we care?

What is the product $(5-\sqrt{7})(5+\sqrt{7})$?

Because really cool things happen when we multiply conjugates!

What is each product?
a. $(6-\sqrt{12})(6+\sqrt{12})$
b. $(3+\sqrt{8})(3-\sqrt{8})$

