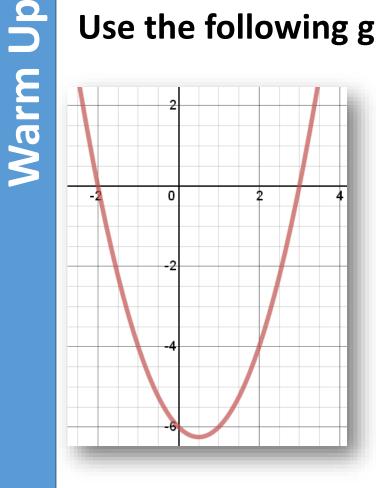
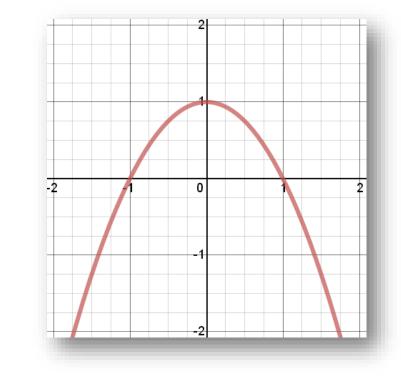
Use the following graphs to determine requested information



Zeros :

Vertex:

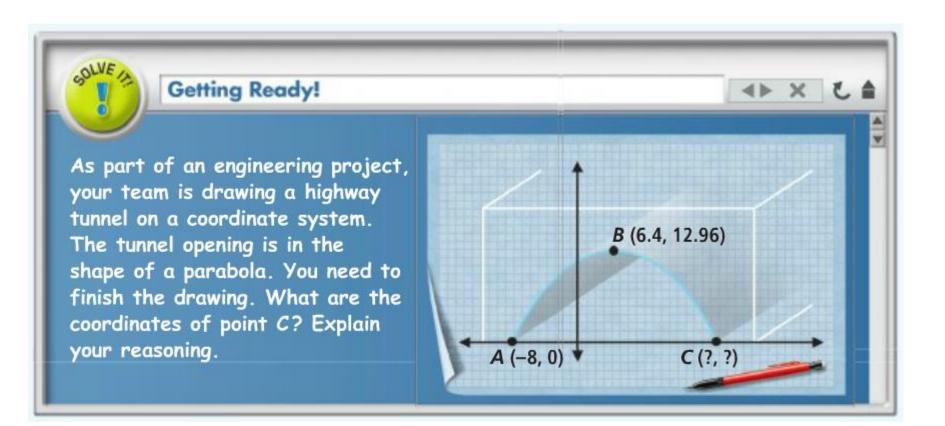
Axis of Symmetry:



Roots :

Maximum:

Axis of Symmetry:



What do we know about parabolas that can help up?

ObjectivesSolve quadratic equations using factoring.Solve quadratic equations using a graphing calculator.

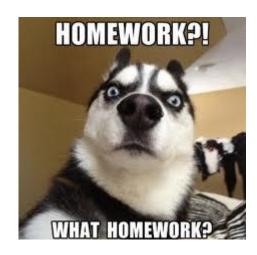
HomeworkPacket page 49: 2-12 evenPacket page 50: 14-22 even

Exercises

Factor each expression.
1. $x^2 + 6x + 8(x + 4)(x + 2)$
3. $2x^2 - 6x + 4 2(x - 2)(x - 1)$
5. $2x^2 - 7x - 4(2x + 1)(x - 4)$
7. $x^2 - 5x - 14(x + 2)(x - 7)$
9. $x^2 - x - 72 (x - 9)(x + 8)$
11. $x^2 + 12x + 32(x + 4)(x + 8)$
13. $x^2 - 3x - 10(x - 5)(x + 2)$
15. $9x^2 - 6x + 1$ (3x - 1)(3x - 1)
17. $x^2 + 4x - 12 (x + 6)(x - 2)$
19. $x^2 - 8x + 12(x - 6)(x - 2)$
21. $x^2 - 6x + 5(x - 1)(x - 5)$

2.	$x^2 - 4x + 3(x - 3)(x - 1)$
4.	$2x^2 - 11x + 5 (2x - 1)(x - 5)$
6.	$4x^2 + 16x + 15 (2x + 5)(2x + 3)$
8.	$7x^2 - 19x - 6 (7x + 2)(x - 3)$
10.	$2x^2 + 9x + 7 (2x + 7)(x + 1)$
12.	$4x^2 - 28x + 49 (2x - 7)(2x - 7)$
14.	$2x^2 + 9x + 4$ (2x + 1)(x + 4)
16.	$x^2 - 10x + 9 (x - 1)(x - 9)$
18.	$x^2 + 7x + 10 (x + 5)(x + 2)$
20.	$2x^2 - 5x - 3(2x + 1)(x - 3)$
22.	$3x^2 + 2x - 8 (3x - 4)(x + 2)$

Prentice Hall Algebra 2 • Teaching Resources Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.



Exercises

Factor each expression.

23. $x^2 - 12x + 36$ $(x - 6)^2$ 26. $x^2 - 64$ (x + 8)(x - 8)29. $27x^2 - 12$ 3(3x + 2)(3x - 2)32. $9x^2 - 16$ (3x + 4)(3x - 4)35. $125x^2 - 100x + 20$ $5(5x - 2)^2$

24. $x^2 + 30x + 225$ $(x + 15)^2$ 27. $9x^2 - 42x + 49$ $(3x - 7)^2$ 30. $49x^2 + 42x + 9$ $(7x + 3)^2$ 33. $8x^2 - 18$ 2(2x + 3)(2x - 3)36. $-x^2 + 196$ -(x + 14)(x - 14)

25. $9x^2 - 12x + 4$ $(3x - 2)^2$ 28. $25x^2 - 1$ (5x + 1)(5x - 1)**31.** $16x^2 - 32x + 16$ $16(x-1)^2$ **34.** $81x^2 + 126x + 49$ $(9x + 7)^2$ **37.** $-16x^2 - 24x - 9$ $-(4x + 3)^2$

Prentice Hall Algebra 2 • Teaching Resources Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

SOLVING QUADRATIC EQUATIONS

What exactly does that mean?

When we solve quadratic equations, we're looking for the **zeros** of the function.

The **zeros** of a quadratic equation are found at x values that cause the function value (or y) to equal 0.

The **zeros** of the quadratic function are also referred to as

?

If 3x = 0, what is the value of x?

When two things are multiplied together and the answer is zero, one or both of the things has to equal zero.

In this case x has to equal zero.

Zero Product Property If ab = 0 then a = 0 or b = 0 To solve this equation, we factor and find what values of x will make each factor equal to zero.

$$x^2 - 5x + 6 = 0$$

(x - 2)(x - 3) = 0

Set each factor equal to zero and solve

(x-2) = 0 (x-3) = 0x = 2 x = 3

Solve the quadratic equation $x^2 - 10x + 16 = 0$

(x-8)(x-2) = 0, x = 8 and x = 2

Solve the quadratic equation $2x^2 = 7x + 4$

The equation must be equal to zero to solve. Move all the terms to one side.

The equation becomes
$$2x^2 - 7x - 4 = 0$$

Now factor and solve.

$$(x-4)(2x+1) = 0, x = 4 \text{ and } x = -\frac{1}{2}$$

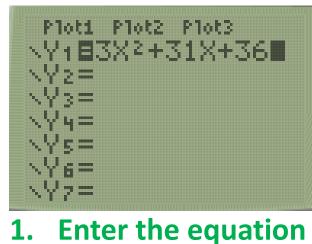
You do problems 3 and 11 on packet page 49.

Solve the quadratic equation $3x^2 + 31x + 36 = 0$

Some equations are too difficult to solve by factoring.

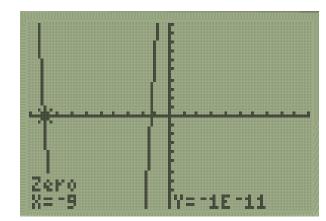
In this case we will use the graphing calculator to solve.

Solve the quadratic equation $3x^2 + 31x + 36 = 0$

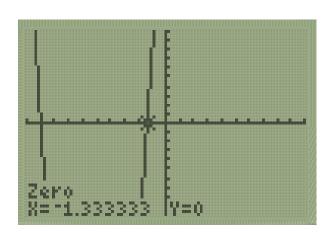


into Y=

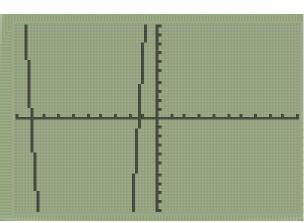
3. Press [2nd][Trace]



4. Find first zero



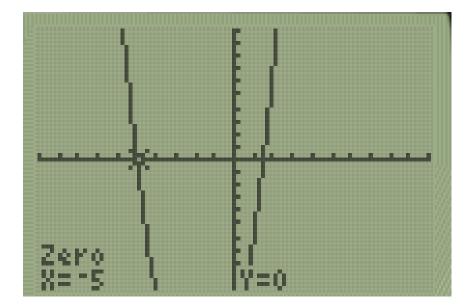
5. Find second zero

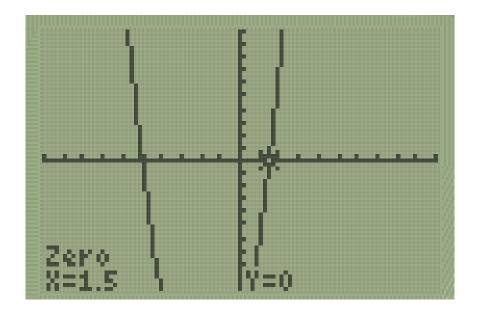


2. Press [Graph]

Solve $2x^2 + 7x = 15$

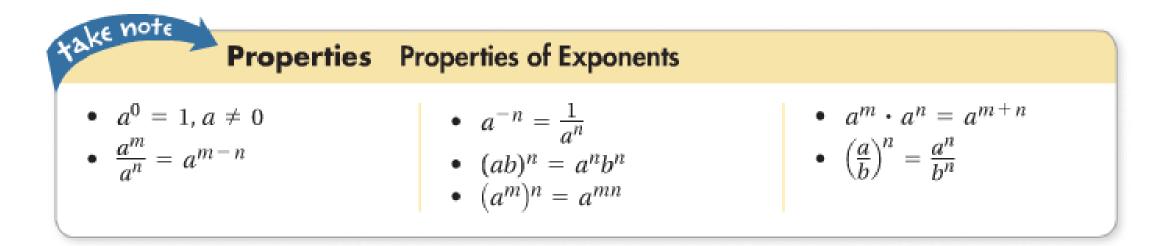
Think about what you'll enter into y=





You do problems 16 and 18 on packet page 50.

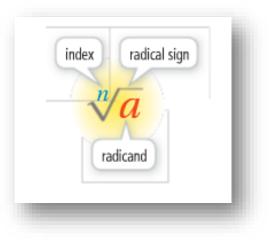
A little radical review



Example

Simplify and rewrite each expression using only positive exponents.

a. $(5a^3)(-3a^{-4})$ b. $(-4x^{-3}y^5)^2$



Essential Understanding Corresponding to every power, there is a root. For example, just as there are squares (second powers), there are square roots. Just as there are cubes (third powers), there are cube roots, and so on.

- $5^2 = 25$ 5 is a square root of 25.
- $5^3 = 125$ 5 is a cube root of 125.
- $5^4 = 625$ 5 is a fourth root of 625.
- $5^5 = 3125$ 5 is a fifth root of 3125.

This pattern suggests a definition of an *n*th root.

For any real number
$$a$$
, $\sqrt[n]{a^n} = \begin{cases} a \text{ if } n \text{ is odd} \\ |a| \text{ if } n \text{ is even} \end{cases}$

It is easy to overlook this rule for simplifying radicals. It is particularly important that you remember it when the radicand contains a variable expression. You must *include* the absolute value when *n* is even, and you must *omit* it when *n* is odd.

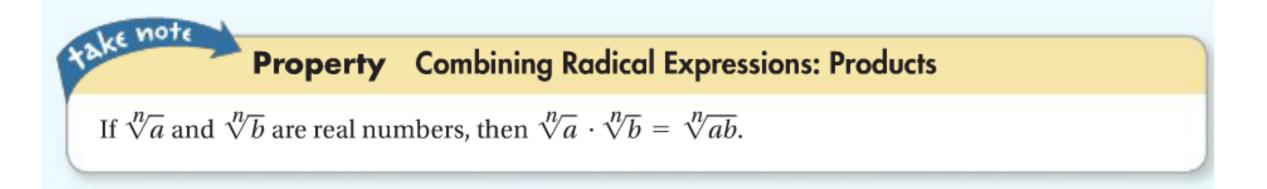
What is a simpler form of each radical expression?

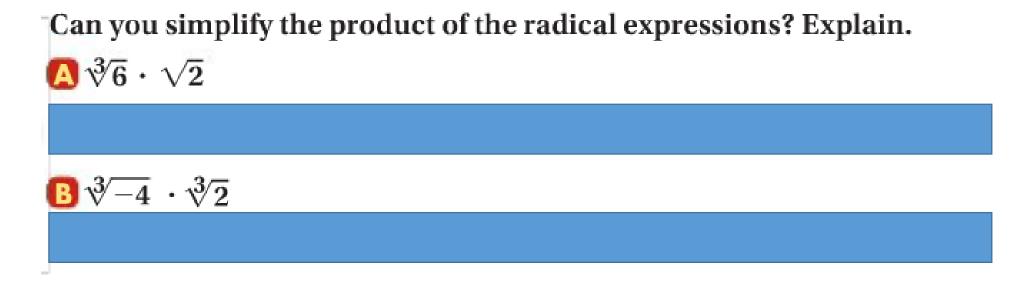
 $\boxed{A}\sqrt{16x^8}$

$$\sqrt{16x^8} = \sqrt{4^2(x^4)^2} = \sqrt{(4x^4)^2} = |4x^4| = 4x^4$$

You need to include absolute value symbols because the index of a square root is 2, which is even. However, $|4x^4| = 4x^4$ because x^4 is always nonnegative.

B ∛a⁶b⁹





"ImPerfect" Squares

If you are commanded to find $\sqrt[2]{12}$

More "ImPerfect" Squares

```
If you are commanded to find \sqrt[4]{y^5}
```

More "ImPerfect" Squares

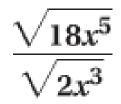
If you are commanded to find $\sqrt[3]{x^9y^4}$

Find the simplest form of $\sqrt[3]{54x^5}$

Property Combining Radical Expressions: Quotients

If
$$\sqrt[n]{a}$$
 and $\sqrt[n]{b}$ are real numbers and $b \neq 0$, then $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$.

What is the simplest form of the quotient?



take note

$$\frac{\sqrt[3]{162y^5}}{\sqrt[3]{3y^2}}$$

Property Combining Radical Expressions: Sums and Differences Use the Distributive Property to add or subtract like radicals. $a\sqrt[n]{x} + b\sqrt[n]{x} = (a + b)\sqrt[n]{x}$ $a\sqrt[n]{x} - b\sqrt[n]{x} = (a - b)\sqrt[n]{x}$

What is the simplified form of each expression?

 $\triangle 3\sqrt{5x} - 2\sqrt{5x}$

B $6x^2\sqrt{7} + 4x\sqrt{5}$

G $12\sqrt[3]{7xy} - 8\sqrt[5]{7xy}$

What is the simplest form of the expression? $\sqrt{12} + \sqrt{75} - \sqrt{3}$

Conjugates are expressions, like $\sqrt{a} + \sqrt{b}$ and $\sqrt{a} - \sqrt{b}$, that differ only in the signs of the second terms. When *a* and *b* are rational numbers, the product of two radical conjugates is a rational number.

So why do we care?

What is the product $(5 - \sqrt{7})(5 + \sqrt{7})$?

Because really cool things happen when we multiply conjugates! What is each product? **a.** $(6 - \sqrt{12})(6 + \sqrt{12})$

b.
$$(3 + \sqrt{8})(3 - \sqrt{8})$$