Warm-up

Sunday, March 1, 2015

Solve the following quadratic. Use any method you like.

1. $f(x)=x^{2}-4 x-21$

Divide using synthetic division.

$$
\text { 2. }\left(x^{3}-2 x^{2}-14 x-5\right) \div(x+3)
$$

$$
\text { 3. }\left(x^{4}-3 x^{2}+2 x+1\right) \div(x+2)
$$

Objectives

Use the remainder Theorem to find the remainder of a division problem without having to perform any division.

Use the remainder Theorem to determine if a linear binomial is a factor of a given polynomial.

Homework

Packet Page 8; 1-5 all
Packet Page 9; Left column only, 1-5 all

Check your homework

Exercises

What is the quotient and remainder of the following polynomials?
11. $\left(x^{3}-2 x+8\right) \div(x+2)$

$$
x^{2}-2 x+2, R 4
$$

12. $\left(12 x^{3}-71 x^{2}+57 x-10\right) \div(x-5)$ $12 x^{2}-11 x+2, \mathrm{R} 0$
13. $\left(3 x^{4}+x^{3}-6 x^{2}-9 x+12\right) \div(x+1)$ $3 x^{3}-2 x^{2}-4 x-5, \mathrm{R} 17$
14. $\left(2 x^{3}-15 x+23\right) \div(x-2)$

$$
2 x^{2}+4 x-7, \mathrm{R} 9
$$

15. $\left(x^{3}+x+10\right) \div(x+2)$
$x^{2}-2 x+5, R 0$
16. $\left(x^{4}-12 x^{3}-18 x^{2}+10\right) \div(x+4)$
$x^{3}-16 x^{2}+46 x-184, \mathrm{R} 746$

Sulprise Quiz!

Divide using synthetic division.

$$
\text { 1. }\left(8 x^{3}-55 x^{2}+44 x-12\right) \div(x-6)
$$

2. $\left(x^{3}-9 n-3\right) \div(n+3)$

Use synthetic division to determine if $x-3$ is a factor of $f(x)=6 x^{3}-5 x^{2}+4 x-17$

3 | 6 | -5 | 4 | -17 | |
| ---: | ---: | ---: | ---: | ---: |
| | | 18 | 39 | 129 |
| | 6 | 13 | 43 | 112 |
| | | | | |

Now just for grins evaluate $f(3)$.

$$
f(3)=6(3)^{3}-5(3)^{2}+4(3)-17=112
$$

One more polynomial tool for you

The Remainder Theorem

If $f(x)$ is a polynomial in x then the remainder when dividing $f(x)$ by $x-a$ is $f(a)$

So what the heck does that mean?

I can do a couple of things without even having to do any division!

Example 1 pp8

Find the remainder of $\left(3 x^{3}+4 x^{2}-5 x+3\right) \div(x+2)$
Evaluate the divisor at $x=-2$.

$$
3(-2)^{3}+4(-2)^{2}-5(-2)+3=5
$$

Check by synthetic division

Example 2 pp8

Find the remainder of $\left(2 x^{3}-5 x^{2}+x-3\right) \div(x-1)$
Evaluate the divisor at $x=1$.

$$
2(1)^{3}-5(1)^{2}+(1)-3=-5
$$

Check by synthetic division

$$
\begin{aligned}
1 & \begin{array}{cccc}
2 & -5 & 1 & -3 \\
& 2 & -3 & -2
\end{array} \\
& 2
\end{aligned} \begin{array}{lll}
-3 & -2 & -5
\end{array}
$$

You do exercises 1-5 on pp8.

Check 1

Find the remainder of $\left(x^{3}-5 x^{2}+6 x-4\right) \div(x-2)$
Evaluate the divisor at $x=2$.

$$
2^{3}-5(2)^{2}+6(2)-4=-4
$$

Check by synthetic division

2 | 1 | -5 | 6 | -4 |
| ---: | ---: | ---: | ---: |
| | 2 | -6 | 0 |
| | 1 | -3 | 0 |
| | | -4 | |

We can also use the Remainder Theorem to find factors of polynomials.
Remember: When we divide a polynomial by a factor the remainder is always zero.

Is $(x-3)$ a factor of $2 x^{3}-3 x^{2}-8 x-3$?

Method 1:Check by synthetic division

$$
2(3)^{3}-3(3)^{2}-8(3)-3=0
$$

You do exercises 1-5 on pp9. Left side only.

Factoring Cubic Functions, an introduction to finding ALL roots.

If $(x+1)$ is a factor of $x^{3}+6 x^{2}+11 x+6$, what are the remaining factors?

Some things to think about...
How many factors will this cubic have in total?
Three.
What should I do first?
Divide out the given factor.
What will be the degree of the quotient after dividing out the first factor?
2, a quadratic!
How can I find the remaining factors?
AC method, Quadratic Formula, Graphing! Oh My!

If $(x+1)$ is a factor of $x^{3}+6 x^{2}+11 x+6$, what are the remaining factors?

Essential Understanding The degree of a polynomial equation tells you how many roots the equation has.

It is easy to see graphically that every polynomial function of degree 1 has a single zero, the x-intercept. However, there appear to be three possibilities for polynomials of degree 2 . They correspond to these three graphs:

$$
y=x^{2}-4
$$

Two real zeros

$y=x^{2}-2 x+1$
One real zero

$y=x^{2}+2 x+2$
No real zeros

Theorem The Fundamental Theorem of Algebra
If $P(x)$ is a polynomial of degree $n \geq 1$, then $P(x)=0$ has exactly n roots, including multiple and complex roots.

So $p(x)=x^{3}+4 x^{2}-2$ has 3 roots

So $f(x)=x^{4}+3 x^{2}-7$ has 4 roots

So $g(x)=7 x^{102}+43 x^{27}-x$ has 102 roots

Let's play how many roots?

Show me with your fingers...

$$
\begin{aligned}
& f(x)=x^{2}+2 \\
& f(x)=7 x^{5}+4 x^{4}+3 x-3 \\
& f(x)=x^{2}+x^{6}-2
\end{aligned}
$$

So how do we find all these roots?

Find all the roots of $x^{5}-x^{4}-3 x^{3}+3 x^{2}-4 x+4=0$

Enter the equation into your calculator and graph.
How many roots/zeros do you see?

According to the FTA, how many roots are there?

Use your calculator to find the three roots.

You should get $x=-2, x=1$ and $x=2$

But what about the other 2 roots?

