Warm-up

Sunday, March 1, 2015

Solve the following quadratic. Use any method you like.

$$1.f(x) = x^2 - 4x - 21$$

Divide using synthetic division.

2.
$$(x^3 - 2x^2 - 14x - 5) \div (x + 3)$$

3.
$$(x^4 - 3x^2 + 2x + 1) \div (x + 2)$$

Objectives

Use the remainder Theorem to find the remainder of a division problem without having to perform any division.

Use the remainder Theorem to determine if a linear binomial is a factor of a given polynomial.

Homework

Packet Page 8; 1-5 all Packet Page 9; Left column only, 1-5 all

Check your homework

Exercises

What is the quotient and remainder of the following polynomials?

11.
$$(x^3 - 2x + 8) \div (x + 2)$$

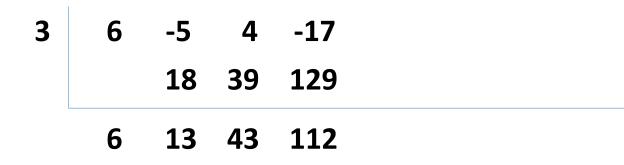
 $x^2 - 2x + 2, R 4$ 12. $(12x^3 - 71x^2 + 57x - 10) \div (x - 5)$
 $12x^2 - 11x + 2, R 0$ 13. $(3x^4 + x^3 - 6x^2 - 9x + 12) \div (x + 1)$
 $3x^3 - 2x^2 - 4x - 5, R 17$ 14. $(2x^3 - 15x + 23) \div (x - 2)$
 $2x^2 + 4x - 7, R 9$ 15. $(x^3 + x + 10) \div (x + 2)$
 $x^2 - 2x + 5, R 0$ 16. $(x^4 - 12x^3 - 18x^2 + 10) \div (x + 4)$
 $x^3 - 16x^2 + 46x - 184, R 746$

Divide using synthetic division.

1.
$$(8x^3 - 55x^2 + 44x - 12) \div (x - 6)$$

2.
$$(x^3 - 9n - 3) \div (n + 3)$$

Use synthetic division to determine if x - 3 is a factor of $f(x) = 6x^3 - 5x^2 + 4x - 17$



Now just for grins evaluate f(3).

$$f(3) = 6(3)^3 - 5(3)^2 + 4(3) - 17 = 112$$

The Remainder Theorem

If f(x) is a polynomial in x then the remainder when dividing f(x) by x - a is f(a)

So what the heck does that mean?

I can do a couple of things without even having to do any division!

One more polynomial tool for you

Example 1 pp8

Find the remainder of
$$(3x^3 + 4x^2 - 5x + 3) \div (x + 2)$$

Evaluate the divisor at
$$x = -2$$
.
 $3(-2)^3 + 4(-2)^2 - 5(-2) + 3 \neq 5$

Check by synthetic division

Example 2 pp8

Find the remainder of
$$(2x^3-5x^2+x-3) \div (x-1)$$

Evaluate the divisor at
$$x = 1$$
.
 $2(1)^3 - 5(1)^2 + (1) - 3 = -5$

Check by synthetic division

You do exercises 1-5 on pp8.

Check 1

Find the remainder of
$$(x^3-5x^2+6x-4) \div (x-2)$$

Evaluate the divisor at
$$x = 2$$
.
 $2^3 - 5(2)^2 + 6(2) - 4 = -4$

Check by synthetic division

We can also use the Remainder Theorem to find factors of polynomials.

Remember: When we divide a polynomial by a **factor** the remainder is always **zero**.

Is
$$(x - 3)$$
 a factor of $2x^3 - 3x^2 - 8x - 3$?

Method 1: Check by synthetic division

Method 2: Remainder Theorem

$$2(3)^3 - 3(3)^2 - 8(3) - 3 = 0$$

You do exercises 1-5 on pp9. Left side only. **Factoring Cubic Functions, an introduction to finding ALL roots.**

If (x + 1) is a factor of $x^3 + 6x^2 + 11x + 6$, what are the remaining factors?

Some things to think about...

How many factors will this cubic have in total?

Three.

What should I do first?

Divide out the given factor.

What will be the degree of the quotient after dividing out the first factor?

2, a quadratic!

How can I find the remaining factors?

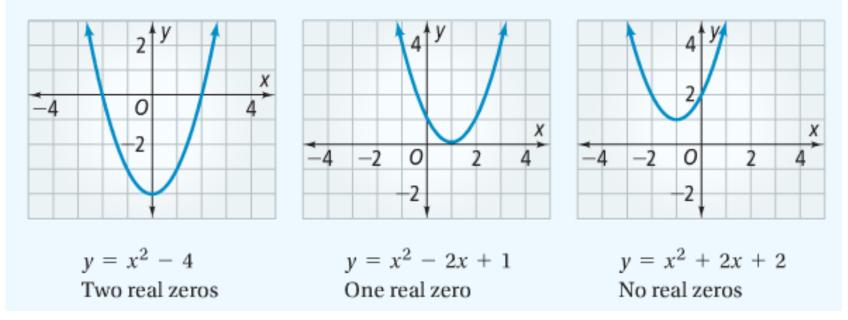
AC method, Quadratic Formula, Graphing! Oh My!

If (x + 1) is a factor of $x^3 + 6x^2 + 11x + 6$, what are the remaining factors?

Did you get (x + 1), (x + 2) and (x + 3)?

Essential Understanding The degree of a polynomial equation tells you how many roots the equation has.

It is easy to see graphically that every polynomial function of degree 1 has a single zero, the *x*-intercept. However, there appear to be three possibilities for polynomials of degree 2. They correspond to these three graphs:



Theorem The Fundamental Theorem of Algebra

take note

If P(x) is a polynomial of degree $n \ge 1$, then P(x) = 0 has exactly *n* roots, including multiple and complex roots.

So $p(x) = x^3 + 4x^2 - 2$ has 3 roots

So f(x) = x⁴ + 3x² - 7 has 4 roots

So g(x) = 7x¹⁰² + 43x²⁷ - x has 102 roots

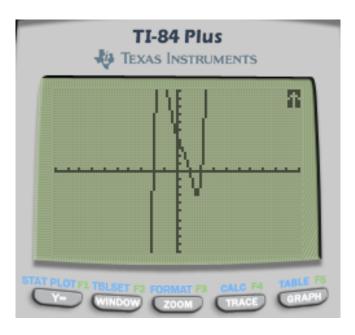
Let's play how many roots?

Show me with your fingers...

 $f(x) = x^{2} + 2$ $f(x) = 7x^{5} + 4x^{4} + 3x - 3$ $f(x) = x^{2} + x^{6} - 2$

So how do we find all these roots?

Find all the roots of $x^5 - x^4 - 3x^3 + 3x^2 - 4x + 4 = 0$



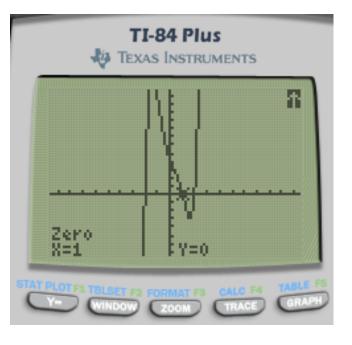
Enter the equation into your calculator and graph.

How many roots/zeros do you see?

According to the FTA, how many roots are there?

Use your calculator to find the three roots.

You should get x = -2, x = 1 and x = 2



But what about the other 2 roots?