Warm-up

1. Describe the transformations that changed the function $f(x)=x^{2}$ to $g(x)=7(x-3)^{2}-2$
2. Create a quadratic equation with the roots $x=2$ and $x=1$.
3. The function $f(x)=x^{2}+18-8 x$ has what type of roots? How do you know?

Objectives

Use Polynomial Long Division to divide one polynomial into another polynomial.

Use Synthetic Division to divide one polynomial into another polynomial.

Homework

Packet Page 40, 5-4 Dividing Polynomials: 12, 14 and 16
Packet Page 36, 5-4 Dividing Polynomials: 17-29 odd

Homework Review

Divide using polynomial long division.

1. $\left(3 x^{2}-8 x+7\right) \div(x-1)$
2. $\left(x^{3}+5 x^{2}-3 x-4\right) \div(x+6)$
$3 x-5, \mathrm{R} 2$

$$
x^{2}-x+3, \mathrm{R}-22
$$

3. $\left(x^{2}+3 x-8\right) \div(x-5)$ $x+8, \mathrm{R} 32$
4. $\left(x^{2}+6 x+14\right) \div(x+3)$
$x+3, \mathrm{R} 5$
5. $\left(x^{3}-7 x^{2}+11 x+3\right) \div(x-3)$
$x^{2}-4 x-1$
6. $\left(2 x^{3}-3 x^{2}-x-2\right) \div(x-2)$
$2 x^{2}+x+1$
7. $\left(2 x^{2}-4 x+7\right) \div(x-3)$
$2 x+2, R 13$
8. $\left(x^{3}+2 x^{2}-20 x+4\right) \div(x+7)$

$$
x^{2}-5 x+15, \mathrm{R}-101
$$

9. $\begin{gathered}\left(x^{2}-5 x+2\right) \div(x-1) \\ x-4, \mathrm{R}-2\end{gathered}$
10. $\left(2 x^{3}+3 x^{2}+x+6\right) \div(x+3)$
$2 x^{2}-3 x+10, \mathrm{R}-24$
Prentice Hall Algebra 2 - Teaching Resources

Use polynomial division to divide $2 x^{5}+x^{4}-15 x^{3}-2 x+10 x-24$ by $x^{2}-x-4$. What is the quotient and what is the remainder?

$$
x ^ { 2 } - x - 4 \longdiv { 2 x ^ { 5 } + x ^ { 4 } - 1 5 x ^ { 3 } - 2 x + 1 0 x - 2 4 }
$$

Goole siffit...

If you liked long division, you'll love SYNTHETIC division!

Synthetic division was first modeled in the early $1800 s$ by the Italian mathematician, Paolo Ruffini. This process was created to more efficiently perform long division between polynomials. Synthetic division is a form of shorthand mathematics, which allows you to work solely with the coefficients without having to worry about the variables. You can find more information here: http://www.purplemath.com/modules/synthdiv.htm

But...there's some fine print. Itonly works when you divide by a linear factor. (Degree of 1)

AND you divide by the zero!

Use synthetic division to divide $x^{3}+13 x^{2}+46 x+48$ by $x+3$. What is the quotient and what is the remainder?

Use synthetic division to divide $x^{3}+3 x^{2}-15$ by $x+5$. What is the quotient and what is the remainder?

Use synthetic division to divide $x^{3}+x^{2}-10 x+8$ by $x-1$. What is the quotient and what is the remainder?

Look at 5-4 Dividing Polynomials page 40.

Use synthetic division to find the quotient and remainder.

13. $\left(3 x^{4}+x^{3}-6 x^{2}-9 x+12\right) \div(x+1)$

To Turn in for a classwork grade:
 Packet Page 35-36
 5-4 Dividing Polynomials; 3, 23 and 25

You may work with a partner

