Draw a graph with the following characteristics:
Maximums at $(-3,4)$ and $(2,2)$
Minimum at (-1,-3)
X intercepts at $(-4,0),(-2,0)$ and $(1,0)$
Y intercept at (0,-2)
Increasing Intervals $(-\infty,-3)$ and $(-1,2)$
Decreasing Intervals ($-3 .-1$) and ($2, \infty$)

HINT: plot points first then connect the dots.

Homework Questions?
$Q^{41 i z}$ on $_{\text {sita }}$

Define and identify the following for a given function Domain/Range
 Maximum /Minimums
 Increasing/Decreasing Intervals
 Vertexes Intercepts, x and y

Define and identify the End Behavior for a function

Define Parent Functions and be able to associate the graph of a parent function with the correct name and function notation.

Determine the characteristics of Parent Functions.

Domain and Range

Remember this from yesterday?

A FUNCTION is a relation in which each element of the domain corresponds with exactly one element of the range.

Domain	Range
Input	Output
x	y

Domain and Range are intervals.
Domain is the interval(s) of X values for which there is a corresponding Y value.
Range is the interval(s) of Y values for which the there is a corresponding X value.

Look at the x axis.
Remember if there is no dot at the far ends of the graph then it goes on forever in that direction.

Work from left to right. (or smallest numbers to largest numbers)

Where is the first x value that has a
 corresponding y value?

Since we don't have one the we say the domain interval starts at $-\infty$.

Look at the x axis.
Continue tracing from left to right. (or smallest numbers to largest numbers)

Where is the last x value that has a corresponding y value?

Since we don't have one, the function goes on forever off to the left. We say the domain
 interval ends at ∞.

So the domain for this function is $(-\infty, \infty)$

No dot at the end of the line. What does that mean? :)

Work from bottom to top. (or smallest numbers to largest numbers)

Where is the first y value that has a corresponding x value?

Since we don't have one, we say the range interval starts at $-\infty$.

Look at the y axis.
Continue tracing from top to bottom.

Where is the last y value that has a corresponding x value?

Since we don't have one, the function goes on forever. We
 say the range interval ends at ∞.

So the range of this function is $(-\infty, \infty)$

End behavior describes what goes on at the far ends of the graph.

It's written in the following format

$$
\begin{aligned}
& x \rightarrow \infty, y \rightarrow \text { something } \\
& x \rightarrow-\infty, y \rightarrow \text { something }
\end{aligned}
$$

And we say
as x approaches positive ∞, y approaches something as x approaches negative ∞, y approaches something

First, look at the far Ends of the graph. There

End Behavior

 will always be two ends. :)If the end is pointing up, it's going toward $+\infty$

If the end is pointing down, it's going toward $-\infty$

Next, start at the origin and look to the RIGHT. Is the graph pointing up or down? Depending on which way it's pointing...

Up: As x approaches positive infinity y approaches positive infinity. We write

$$
x \rightarrow \infty, y \rightarrow \infty
$$

Down: As x approaches positive infinity y approaches negative infinity. We write

$$
x \rightarrow \infty, y \rightarrow-\infty
$$

Next, start at the origin and look to the LEFT. Is the graph pointing up or down? Depending on which way it's pointing...

Up: As x approaches negative infinity y approaches positive infinity. We write

$$
x \rightarrow-\infty, y \rightarrow \infty
$$

Down: As x approaches negative infinity y approaches negative infinity. We write

$$
x \rightarrow-\infty, y \rightarrow-\infty
$$

End Behavior

Now let's put it together

We see
As x approaches positive infinity y approaches negative infinity. As x approaches negative infinity y approaches positive infinity.

We write
$x \rightarrow \infty, y \rightarrow-\infty$

$x \rightarrow-\infty, y \rightarrow \infty$

End Behavior

Now let's put it together

We see
As x approaches positive infinity y approaches positive infinity. As x approaches negative infinity y approaches negative infinity.

We write

$x \rightarrow \infty, y \rightarrow \infty$
$x \rightarrow-\infty, y \rightarrow-\infty$

Wow! That's a lot.

Finish the table from the previous example.

Identify the following	
Maximum(s)	$(1.1,12)$
Minimum(s)	$(3.5,-2)$
Increasing Intervals	$(-\infty, 1.1)$
Decreasing Intervals	$(1.1,5)$
x Intercepts	$(0,0),(3,0),(4,0)$
y intercepts	$(0,0)$
Domain	
Range	\square
End Behavior	

Wow! That's a lot.

Finish the table from the previous example.

Identify the following	
Maximum(s)	$(-0.5,6),(2.5,18)$
Minimum(s)	$(0.6,1)$
Increasing	$(-\infty,-0.5)$,
Intervals	$(0.6,2.5)$
Decreasing Intervals	$\left(\begin{array}{c}(-0.5,0.6) \\ (2.5, \infty)\end{array}\right.$
x Intercepts	$(-1,0),(3.25,0)$
y intercepts	none
Domain	\square
Range	
End Behavior	

Introducing PARENT FUNCTIONS!

Parent functions are the simplest form of families of functions.

Function	Parent Function
$g(x)=2 x^{2}+4$	$f(x)=x^{2}$
$g(x)=x-7$	$f(x)=x$
$g(x)=\frac{1}{3}(x-7)^{3}-1$	$f(x)=x^{3}$
$g(x)=\|x+4\|$	$f(x)=\|\mathrm{x}\|$

Constant, $f(x)=C$

Domain	Range		
End Behavior			
as $x \rightarrow-\infty, y \rightarrow$	as $x \rightarrow \infty, y \rightarrow$		
Critical Points			
Vertex	X intercepts		

Linear, $f(x)=x$

Domain	Range	
End Behavior		
as $x \rightarrow-\infty, y \rightarrow$	as $x \rightarrow \infty, y \rightarrow$	
Critical Points		
Vertex	X intercepts \quad intercepts	

Quadratic, $f(x)=x^{2}$

Domain	Range	
	End Behavior	
as $x \rightarrow-\infty, y \rightarrow$	as $x \rightarrow \infty, y \rightarrow$	
Critical Points		
Vertex	X intercepts \quad intercepts	

Radical (Square Root), $f(x)=$

Domain	Range	
End Behavior		
as $x \rightarrow-\infty, y \rightarrow$	as $x \rightarrow \infty, y \rightarrow$	
Critical Points		
Vertex	X intercepts \quad intercepts	

Work with a partner to complete the next five parent functions.

If you're feeling confident complete the last function, Rational.

We'll do that one together as a class.

Cubic, $f(x)=x^{3}$

Exponential, $f(x)=b^{x}, b>1 \quad$ Absolute Value, $f(x)=|x|$

Cube Root, $f(x)=\sqrt[3]{x}$
$\log , f(x)=\log _{b}(x), b>1$

Rational, Inverse, Reciprocal, $f(x)=\frac{1}{x}$

Domain	Range	
End Behavior		
as $x \rightarrow-\infty, y \rightarrow$	as $x \rightarrow \infty, y \rightarrow$	
Critical Points		
Vertex	X intercepts \quad intercepts	

What's different about this graph?

Did we meet our objectives?

