Warm-up

1. Write the new equation of $f(x)=x^{2}$ given the following transformations: reflected over the xaxis, left 3 and up 2.
2. Write the new equation of $g(x)=2^{x}$ given the following transformations: reflected over the x axis, right 4 and down 3 .
3. What is the end behavior for $f(x)=-3 x^{4}+9 x^{3}+5 x+3$
a.) Up and Up, b.) Up and Down,
c.) Down and Down, d.) Down and Up

FRONT OF ROOM

		Caleb P.(4)	Kacie (Mary B.) (9)	Raul V. (2)	Ariany A. (12)
Joanna C. (7)	Casey A. (13)	Trewon T. (1)	Jazz B. (11)	Jordan J.	Makayla Ch. (5)
Micah M. (25)	Daniella A. (14)	Mijanou A. (10)	Melissa C.(22)	Justin B. (8)	Manual F. (21)
Courtney S. (24)	Sierra B.	Arthur M.(23)	Kayla H.	Bruce C. (17)	Malik M. (20)
	Trya O. (6)	DeAnthony C. (15)	Makayla B. (18)	Tristan W. (3)	Tavion W. (Teyy) (19)
Sandra L. (16)	Tia M.	Frida F.	Timothy C. (TJ)		Leslie P.

$3^{\text {rd }}$ Block

FRONT OF ROOM

	D'Aja J. (16)	Sydney H. (5)
Matty A. (17)	Angie L. (22)	Christina K.
Peter A. (8)	Fabian C. (1)	Ashaani L. (10)
	Alyssa H (19)	Ayuk A.(21)

	Christian W. (13)	Donel D.(11)
Devon K. (23)	Katera D. (7)	Sofia P (18)
Wesley C (15)	Brenda H (4)	
Lauren Y.	Marcos R. (9)	Delia F.(20)

	AnnMarie	Sosa (12)	Leo G.	Thedrin C.	Sabrina W.
Abby F.	Brianna R.	Brandon G. (6)	Nam (11)	London C.(3)	Allan H.

$4^{\text {th }}$ Block

FRONT OF ROOM

Maddie B.	Wesley K.	Diego R. (19)	Kristal E. (9)
Johann A.	Haley K. (20)	Cory C. (11)	Shellby H. (14)
Kory O.	Phillip B. (17)	Stefon J. (15)	Natasha P. (6)
Matt S.	Rebecca J.	Nehemiah M. (8)	America T.
	Megan H.	Adrian P. (10)	Karen M. (18)

Cherry T.	Samantha A.	
Stukes L.	Gabby J. (16)	Joseph P.
Taryn H.	Naomi I. (5)	Quentin K.
Josh A.	De' Narius G. (12)	Sean F.
Seth M. (7)	Noah D. (1)	Saul T.

Homework Review...

Page 7

1. growth, 8000
2. Decay, 20
3. Decay, 15
4. Growth, 6

Page 8
5. 8.81
6. 153,593.30
7. 12,765.15
8. $2,391.48$

Page 9

1. 160.10
2. $43,871.99$
3. 16,777,216
4. 4
5. $6191,4 \%$
6. $361,223.09$
7. $2.37034368 \mathrm{E}-11$

Page 10
8. 51.24
9. a) 1724.48 b) 1686.05 c) 1799.78
10. Hmm, somewhere between 1 and 2
11. a) 2674.38 b) 2654.49
c) 2622.93
d) 2570.99
12. 1: 1419.07, 2: 2013.75
13. 13193.30

Objectives

Define the relationship between a function and its inverse.
Find the inverse relation of a function.
Convert between Exponential and Logarithmic form.

Homework

Packet pages 11, all problems.
Packet pages 12-13, all problems.

QUIZ THURSDAY - Growth and Decay Problems, Inverse Functions

in-vert 디 [v. in-vurt; adj., n. in-vurt] ? Show IPA verb (used with object)

1. to turn upside down.
2. to reverse in position, order, direction, or relationship.
3. to turn or change to the opposite or contrary, as in nature, bearing,
4. to turn inward or back upon itself.
5. to turn inside out.

A function and its inverse function can be described as the "DO" and the "UNDO" functions.

$$
\begin{gathered}
\text { For example } \\
\text { Square and Square Root Function } \\
3^{2}=9, \sqrt{9}=3
\end{gathered}
$$

Can you think of some we already know about?

$$
\begin{gathered}
\text { For example } \\
\text { Cube Root and Cube Function } \\
\sqrt[3]{125}=5,5^{3}=125
\end{gathered}
$$

Notice that the order you apply the functions doesn't matter.

Let's look at a table of values for a function and it's inverse...

$$
f(x)=x^{2} \quad f(x)=\sqrt{x}
$$

What do you notice about their x and y values?
The x and y values are just flipped. This will be true for any function and its inverse.
This also means the domain and range are flipped for a function and its inverse.

The burning question....

How do we find the equation for an inverse of a function?

Find the inverse of $y=x^{2}-1$
Two Steps

1. Switch x and y values
2. Solve for y

$$
y=x^{2}-1
$$

Find the inverse
7. $y=3(x+1)$

Two Steps

1. Switch x and y values
2. Solve for y
3. $y=6 x^{2}-4$

Inverse notation

The inverse of a function f is denoted by f^{-1}. You read f^{-1} as "the inverse of $f^{\prime \prime}$ or as " f inverse." The notation $f(x)$ is used for functions, but the relation f^{-1} may not even be a function.

$$
\text { Let } f(x)=6-4 x . \text { Find } f^{-1}(x)
$$

$$
f^{-1}=-\frac{x-6}{4}
$$

Work on page 11 of your packet.

Do problems 1-6

How will you solve this equation?

$8192=2^{x}$

Used to be you had to use one of these.

You're going to use a calculator but you still need to know how logs work.

Things you should know about logarithms...
Logarithms are exponents

$$
b^{x}=y \leftrightarrow \log _{b} y=x
$$

For example...

$$
3^{4}=81 \leftrightarrow \log _{3} 81=4
$$

The log function returns the exponent, 4 .
Logarithms are inverses of Exponential Functions

Read this as "log base b of x " or log base 3 of 81.
In other words, the logarithm y is the exponent to which b must be raised to get x or 4 is the power 3 must be raised to get 81 .

Convert the following to Log form

Exponential Form $\boldsymbol{y}=\boldsymbol{b}^{x}$

$$
\begin{aligned}
16 & =2^{4} \\
9 & =3^{2} \\
1 & =7^{0}
\end{aligned}
$$

$$
2=8^{\frac{1}{3}}
$$

$$
\frac{1}{27}=3^{-3}
$$

Log Form $\log _{b} y=x$

$$
\begin{aligned}
& \log _{2} 16=4 \\
& \log _{3} 9=2 \\
& \log _{7} 1=0
\end{aligned}
$$

$$
\log _{8} 2=\frac{1}{3}
$$

$$
\log _{3} \frac{1}{27}=-3
$$

We can go the other way!

Log Form
$\log _{b} x=y$
$\log _{2} 32=5$
$\log _{5} 25=2$
$\log _{10} 10=1$
$\log _{16} 4=1 / 2$
$\log _{8} 2=1 / 3$

Exponential Form

$$
\begin{aligned}
& x=b^{y} \\
& 32=2^{5} \\
& 25=5^{2} \\
& 10=10^{1} \\
& 4=16^{1 / 2} \\
& 2=8^{1 / 3}
\end{aligned}
$$

Can you find the unknown?
Hint: rewrite the expression in exponential form.

$$
\begin{array}{lll}
\log _{x} 25=2 & x^{2}=25 & x=5 \\
\log _{6} x=2 & 6^{2}=x & x=36 \\
\log _{8} 64=x & 8^{x}=64 & x=2
\end{array}
$$

When you are asked to evaluate a log, simply set it equal to a variable, x. Then use the previous procedures to solve. (Put in exponential form.)
$\log _{4} 16$
$\log _{4} 16=x$
$4^{x}=16$
$x=2$
$\log _{12} 12$
$\log _{9} 1$
$\log _{12} 12=x$
$12^{x}=12 \quad x=1$
$\log _{9} 1=x$
$9^{x}=1$
$x=0$

But what about this type of problem?

Evaluate $\log _{4} 32$

But what about this type of problem?

Evaluate $\log _{32} 2$

