Sunday, February 1, 2015

HINT: plot points first then connect the dots.

Objectives for today

Review 6 basic parent functions and be able to identify each function from an equation or a graph.

Identify the characteristics of Parent Functions.

Homework

Complete your parent functions worksheet

Complete Domain/Range worksheet

Any questions from last night's homework?

Check your answers.

Last time we met...

Domain and Range - What do we look at to determine?

Look at x values for Domain and y values for Range

Maximums and Minimums – What do these look like on the graphs?

Maximums are peaks in the graph and Minimums are valleys

X and Y Intercepts – Where are these found on the graph?

Intercepts are where the graph crosses the x and y axis

Increasing/Decreasing Intervals – How do we describe these intervals?

Use interval notation, use the x axis to define you interval

Look at your packet – Domain and Range worksheet

In groups or by yourself, work on problems 1-12

We'll work on 13 and 14 together

Introducing PARENT FUNCTIONS!

Parent functions are the simplest form of families of functions.

Function	Parent Function
$g(x) = 2x^2 + 4$	$f(x) = x^2$
g(x) = x - 7	f(x) = x
$g(x) = \frac{1}{3}(x-7)^3 - 1$	$f(x) = x^3$
g(x) = x+4	$f(\mathbf{x}) = \mathbf{x} $

Domain		Range
	End Behavior	
as $x \to -\infty, y \to -\infty$	as x -	$\rightarrow \infty, y \rightarrow$
	Critical Points	
Vertex	X intercepts	Y intercepts

Domain		Range
End Behavior		
as $x \to -\infty, y \to$	as x –	$\rightarrow \infty, y \rightarrow$
Critical Points		
Vertex	X intercepts	Y intercepts

Linear, f(x)=x

Quadratic, $f(x)=x^2$

Domain		Range
End Behavior		
as $x \to -\infty, y \to \infty$	as x -	$\rightarrow \infty, y \rightarrow$
Critical Points		
Vertex	X intercepts	Y intercepts

Radical (Square Root), f(x)=

Domain		Range
End Behavior		
as $x \to -\infty, y \to$	as x -	$\rightarrow \infty, y \rightarrow$
Critical Points		
Vertex	X intercepts	Y intercepts

Work with a partner to complete the remaining two functions.

Domain		Range
End Behavior		
as $x \to -\infty$, $y \to -\infty$	as x -	$\rightarrow \infty, y \rightarrow$
Critical Points		
Center	X intercepts	Y intercepts

Absolute Value, f(x)=|x|

	Range	
End Behavior		
as x -	$\rightarrow \infty, y \rightarrow$	
Critical Points		
X intercepts	Y intercepts	
-	End Behavior as x - Critical Points X intercepts	

When a function is **shifted** in any way from its **parent function**, it is said to be **transformed**. We call this a **transformation of a function**. Functions are typically transformed either **vertically** or **horizontally**.

Two categories of Function Transformations

1. Rigid Transformations

The basic shape of the graph is unchanged.

Vertical Shifts Horizontal Shifts Reflections

2. NonRigid Transformations

Cause a distortion, a change in the graph. Stretches Shrinks (Compressions)

Some simple transformations...

Parent Function

Quadratic f(x)=x²

Transformed Function

Shifted Left 3 units Up 2 units

Transformed Function

Shifted Right 2 units Down 2 units

Identify the parent function and the transformations represented in the graphs.

Cubic f(x)=x³ **Transformed Function**

Shifted Down 1 unit **Transformed Function**

Shifted Right 2 units Up 3 units So how do we represent these transformations algebraically?

Today we will focus on Rigid Transformations

Vertical Transformations

When functions are transformed on the **outside** of the f(x) part, you move the function up and down.

Function Notation	Description of Transformation
$g(x) = f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative

Vertical Transformations

Function Notation	Description of Transformation
$g(x) = f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative

How do we interpret this function notation?

Let $f(x) = x^2$ and c = 3 then $g(x) = x^2 + 3$

Let $f(x) = \sqrt{x}$ and c = -4 then $g(x) = \sqrt{x} - 4$

Let $f(x) = 2^x$ and c = 7 then $g(x) = 2^x + 7$

Let's play "What's going to happen to the parent function?"

$$g(x) = x^2 + 3$$
X $f(x) \\ \chi^2$ $g(x) \\ \chi^2+3$ 3912247114003-114-247-3912

Let's play "What's going to happen to the parent function?"

$g(x) = x^3 - 1$		
X	f(x) X ³	g(x) X ³ -1
3	27	26
2	8	7
1	1	0
0	0	-1
-1	-1	-2
-2	-8	-9
-3	-27	-28

Write the equation for the $g(x) = x^2 - 1$ transformed function represented in this graph. Quadratic, $f(x) = x^2$ Parent Function? Critical point that can help us? Vertex Which way did it go? Down By how much? 1 unit -2 0

Write the equation for the transformed function represented in this graph.

Parent Function? Radical, $f(x) = \sqrt{x}$

Critical point that can help us? Intercepts

Which way did it go? **Up**

By how much? 2

2 units

Horizontal Translations

When functions are transformed on the **inside** of the "f(x) part", you move the function left and right. Notice the direction is the **opposite** of the sign inside the "f(x) part".

Function Notation	Description of Transformation
$g(x) = f(x \pm c)$	Horizontal shift left C units if C is positive.
	Horizontal shift right C units if C is negative

Horizontal Translations

Function Notation	Description of Transformation
$g(x) = f(x \pm c)$	Horizontal shift left C units if C is positive.
	Horizontal shift right C units if C is negative

How do we interpret this function notation?

Let
$$f(x) = x^2$$
 and $c = 3$ then $g(x) = (x + 3)^2$

Let
$$f(x) = \sqrt{x}$$
 and $c = -4$ then $g(x) = \sqrt{x-4}$

Let
$$f(x) = 2^x$$
 and $c = 7$ then $g(x) = 2^{x+7}$

Let's play "What's going to happen to the parent function?"

$$g(x) = (x-1)^2$$

$$g(x) = (x+2)^3$$

Write the equation for the transformed function represented in this graph.

Parent Function? **Cubic,** $f(x) = x^3$

Critical point that can help us? Intercepts

Which way did it go? Left

By how much? **1 unit**

Write the equation for the transformed function represented in this graph.

Parent Function? Log, f(x) = Log x

Critical point that can help us? Intercepts

Which way did it go? **Right**

By how much?

2 units

Write the equation for the transformed function represented in this graph.

Parent Function? **Cubic,** $f(x) = x^3$

Critical point that can help us? Intercepts

Which way did it go? Left and up

By how much? Left 2 and up 1

 $f(x) = (x-2)^3 + 1$

Reflections

When a negative sign is found on the **outside** of the "f(x) part" the function is **flipped over the x-axi**s.

When a negative sign is found on the **inside** of the "f(x) part" the function is **flipped over the y-axis**.

Function Notation	Description of Transformation
g(x) = -f(x)	Reflected over the x-axis
g(x) = f(-x)	Reflected over the y-axis

Reflections

Function Notation	Description of Transformation
g(x) = -f(x)	Reflected over the x-axis
g(x) = f(-x)	Reflected over the y-axis

How do we interpret this function notation?

Let
$$f(x) = x^2$$
, then $-f(x) = -x^2$ and $f(-x) = (-x)^2$

Let
$$f(x) = \sqrt{x}$$
, then $-f(x) = -\sqrt{x}$ and $f(-x) = \sqrt{-x}$

Let
$$f(x) = 2^x$$
, then $-f(x) = -2^x$ and $f(-x) = 2^{-x}$

Reflection across the x axis

$$\begin{array}{c|c} f(x) = -x^2 \\ \hline X & X^2 & -X^2 \\ \hline 3 & 9 & -9 \\ 2 & 4 & -4 \\ \hline 1 & 1 & -1 \\ 0 & 0 & 0 \\ \hline -1 & 1 & -1 \\ 0 & 0 & 0 \\ \hline -1 & 1 & -1 \\ \hline -2 & 4 & -4 \\ \hline -3 & 9 & -9 \end{array}$$

Reflection across the y axis

$f(x) = (-x)^3$		
X	-X	(-X) ³
3	-3	-27
2	-2	-8
1	-1	-1
0	0	0
-1	1	1
-2	2	8
-3	3	27

Write the equation for the transformed function represented in this graph.

Parent Function? Radical, $f(x) = \sqrt{x}$

Critical point that can help us? Intercepts

Which way did it go? **No Change**

Which axis has it flipped over? X-axis

Summary of the Rigid Transformations

Function Notation	Description of Transformation
$g(x) = f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative
Function Notation	Description of Transformation
$g(x) = f(x \pm c)$	Horizontal shift left C units if C is positive.
	Horizontal shift right C units if C is negative
Function Notation	Description of Transformation
g(x) = -f(x)	Reflected over the x-axis
g(x) = f(-x)	Reflected over the y-axis

Did we meet our objectives?

Complete the exit ticket and bring it to me to check.