Sunday, February 1, 2015

Draw a graph with the following characteristics:
Maximums at $(-3,4)$ and $(2,2)$
Minimum at (-1,-3)
X intercepts at $(-4,0),(-2,0),(1,0)$, and $(3,0)$
Y intercept at ($0,-2$)
Increasing Intervals $(-\infty,-3)$ and $(-1,2)$
Decreasing Intervals ($-3 .-1$) and ($2, \infty$)

HINT: plot points first then connect the dots.

Objectives for today

Review 6 basic parent functions and be able to identify each function from an equation or a graph. Identify the characteristics of Parent Functions.

Homework

Complete your parent functions worksheet
Complete Domain/Range worksheet

Homework Review
Check your answers.

Last time we met...

Domain and Range - What do we look at to determine?
Look at x values for Domain and y values for Range
Maximums and Minimums - What do these look like on the graphs?
Maximums are peaks in the graph and Minimums are valleys
X and Y Intercepts - Where are these found on the graph?
Intercepts are where the graph crosses the x and y axis
Increasing/Decreasing Intervals - How do we describe these intervals?
Use interval notation, use the x axis to define you interval

Look at your packet - Domain and Range worksheet

In groups or by yourself, work on problems 1-12

We'll work on 13 and 14 together

Introducing PARENT FUNCTIONS!

Parent functions are the simplest form of families of functions.

Function	Parent Function
$g(x)=2 x^{2}+4$	$f(x)=x^{2}$
$g(x)=x-7$	$f(x)=x$
$g(x)=\frac{1}{3}(x-7)^{3}-1$	$f(x)=x^{3}$
$g(x)=\|x+4\|$	$f(x)=\|\mathrm{x}\|$

Constant, $f(x)=C$

Domain	Range		
End Behavior			
as $x \rightarrow-\infty, y \rightarrow$	as $x \rightarrow \infty, y \rightarrow$		
Critical Points			
Vertex	X intercepts		

Linear, $f(x)=x$

Domain	Range	
End Behavior		
as $x \rightarrow-\infty, y \rightarrow$	as $x \rightarrow \infty, y \rightarrow$	
Critical Points		
Vertex	X intercepts \quad intercepts	

Quadratic, $f(x)=x^{2}$

Domain	Range	
	End Behavior	
as $x \rightarrow-\infty, y \rightarrow$	as $x \rightarrow \infty, y \rightarrow$	
Critical Points		
Vertex	X intercepts \quad intercepts	

Radical (Square Root), $f(x)=$

Domain	Range	
End Behavior		
as $x \rightarrow-\infty, y \rightarrow$	as $x \rightarrow \infty, y \rightarrow$	
Critical Points		
Vertex	X intercepts \quad intercepts	

Work with a partner to complete the remaining two functions.
Cubic, $f(x)=x^{3}$

Absolute Value, $f(x)=|x|$

Domain	Range
End Behavior	
as $x \rightarrow-\infty, y \rightarrow$	as $x \rightarrow \infty, y \rightarrow$

Critical Points

Center X intercepts $\quad Y$ intercepts

Domain	Range	
	End Behavior	
as $x \rightarrow-\infty, y \rightarrow$	as $x \rightarrow \infty, y \rightarrow$	
Critical Points		
Vertex	\mathbf{X} intercepts \quad intercepts	

When a function is shifted in any way from its parent function, it is said to be transformed. We call this a transformation of a function. Functions are typically transformed either vertically or horizontally.

Two categories of Function Transformations

1. Rigid Transformations

The basic shape of the graph is unchanged.
Vertical Shifts
Horizontal Shifts
Reflections
2. NonRigid Transformations

Cause a distortion, a change in the graph.
Stretches
Shrinks (Compressions)

Some simple transformations...

Parent Function
Quadratic $f(x)=x^{2}$

Transformed Function
Shifted
Left 3 units
Up 2 units

Transformed Function
Shifted
Right 2 units
Down 2 units

Identify the parent function and the transformations represented in the graphs.

Parent Function
Cubic
$f(x)=x^{3}$

Transformed Function
Shifted
Down 1 unit

Transformed Function
Shifted Right 2 units Up 3 units

So how do we represent these transformations algebraically?

Today we will focus on Rigid Transformations

Vertical Transformations

When functions are transformed on the outside of the $f(x)$ part, you move the function up and down.

Function Notation	Description of Transformation
$\mathrm{g}(x)=f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative

Vertical Transformations

Function Notation	Description of Transformation
$\mathrm{g}(x)=f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative

How do we interpret this function notation?

$$
\begin{aligned}
& \text { Let } f(x)=x^{2} \text { and } c=3 \text { then } g(x)=x^{2}+3 \\
& \text { Let } f(x)=\sqrt{x} \text { and } c=-4 \text { then } g(x)=\sqrt{x}-4 \\
& \text { Let } f(x)=2^{x} \text { and } c=7 \text { then } g(x)=2^{x}+7
\end{aligned}
$$

Let's play "What's going to happen to the parent function?"

$\boldsymbol{g}(\boldsymbol{x})$		
\boldsymbol{y}	$\boldsymbol{x}^{\mathbf{2}}+\mathbf{3}$	
\mathbf{X}	$\mathrm{f}(\mathrm{x})$	$\mathrm{g}(\mathrm{x})$
	X^{2}	$\mathrm{X}^{2}+3$
3	9	12
2	4	7
1	1	4
0	0	3
-1	1	4
-2	4	7
-3	9	12

Let's play "What's going to happen to the parent function?"

$\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{3}}-\mathbf{1}$		
X	$\mathrm{f}(\mathrm{x})$	$\mathrm{g}(\mathrm{x})$
	X^{3}	$\mathrm{X}^{3}-1$
3	27	26
2	8	7
1	1	0
0	0	-1
-1	-1	-2
-2	-8	-9
-3	-27	-28

Write the equation for the transformed function
 represented in this graph.

Parent Function? Quadratic, $f(x)=x^{2}$

Which way did it go? Down

By how much?
1 unit

$$
g(x)=x^{2}-1
$$

Critical point that can help us? Vertex

Which way did it go? Dow
By how much? 1 unit

Write the equation for the transformed function represented in this graph.

Parent Function? Log, $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{b}^{\boldsymbol{x}}$
Critical point that can help us? Intercepts

Which way did it go? Down

By how much? 2 units

$$
g(x)=b^{x}-2
$$

Write the equation for the transformed function represented in this graph.

Parent Function? Radical, $\boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}}$
Critical point that can help us? Intercepts
Which way did it go? Up
By how much? 2 units

$$
g(x)=\sqrt{x}+2
$$

Horizontal Translations

When functions are transformed on the inside of the " $\mathrm{f}(\mathrm{x})$ part", you move the function left and right. Notice the direction is the opposite of the sign inside the " $\mathrm{f}(\mathrm{x})$ part".

Function Notation	Description of Transformation
$g(x)=f(x \pm c)$	Horizontal shift left C units if C is positive.
	Horizontal shift right C units if C is negative

Horizontal Translations

Function Notation	Description of Transformation
$g(x)=f(x \pm c)$	Horizontal shift left C units if C is positive.
	Horizontal shift right C units if C is negative

How do we interpret this function notation?

$$
\begin{aligned}
& \text { Let } f(x)=x^{2} \text { and } c=3 \text { then } g(x)=(x+3)^{2} \\
& \text { Let } f(x)=\sqrt{x} \text { and } c=-4 \text { then } g(x)=\sqrt{x-4} \\
& \text { Let } f(x)=2^{x} \text { and } c=7 \text { then } g(x)=2^{x+7}
\end{aligned}
$$

Let's play "What's going to happen to the parent function?"

$$
g(x)=(x-1)^{2}
$$

Let's play "What's going to happen to the parent function?"

$$
g(x)=(x+2)^{3}
$$

Write the equation for the transformed function represented in this graph.

Parent Function?

Cubic, $f(x)=x^{3}$
Critical point that can help us? Intercepts
Which way did it go? Left
By how much?
1 unit

Write the equation for the transformed function represented in this graph.

Parent Function? Log, $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { L o g }} \boldsymbol{x}$
Critical point that can help us? Intercepts
Which way did it go? Right
By how much? 2 units

$$
f(x)=\log (x-2)
$$

Write the equation for the transformed function represented in this graph.
Parent Function?
Cubic, $f(x)=x^{3}$

Critical point that can help us? Intercepts
Which way did it go? Left and up
By how much?
Left 2 and up 1

$$
f(x)=(x-2)^{3}+1
$$

Reflections

When a negative sign is found on the outside of the " $f(x)$ part" the function is flipped over the x-axis.

When a negative sign is found on the inside of the " $f(x)$ part" the function is flipped over the \mathbf{y}-axis.

Function Notation	Description of Transformation
$\mathrm{g}(x)=-f(x)$	Reflected over the x -axis
$\mathrm{g}(x)=f(-x)$	Reflected over the y-axis

Reflections

Function Notation	Description of Transformation
$\mathrm{g}(x)=-f(x)$	Reflected over the x -axis
$\mathrm{g}(x)=f(-x)$	Reflected over the y -axis

How do we interpret this function notation?

$$
\begin{aligned}
& \text { Let } f(x)=x^{2} \text {, then }-f(x)=-x^{2} \text { and } f(-x)=(-x)^{2} \\
& \text { Let } f(x)=\sqrt{x} \text {, then }-f(x)=-\sqrt{x} \text { and } f(-x)=\sqrt{-x} \\
& \text { Let } f(x)=2^{x} \text {, then }-f(x)=-2^{x} \text { and } f(-x)=2^{-x}
\end{aligned}
$$

Reflection across the x axis

$\boldsymbol{f}(\boldsymbol{x})=-\boldsymbol{x}^{\mathbf{2}}$		
X	X^{2}	$-\mathrm{X}^{2}$
3	9	-9
2	4	-4
1	1	-1
0	0	0
-1	1	-1
-2	4	-4
-3	9	-9

Reflection across the y axis

$\boldsymbol{f}(\boldsymbol{x})=(-\boldsymbol{x})^{\mathbf{3}}$		
\mathbf{X}	$-\mathbf{X}$	$(-X)^{3}$
3	-3	-27
2	-2	-8
1	-1	-1
0	0	0
-1	1	1
-2	2	8
-3	3	27

Write the equation for the transformed function represented in this graph.

Parent Function? Radical, $\boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}}$
Critical point that can help us? Intercepts
Which way did it go? No Change
Which axis has it flipped over? X-axis

$$
f(x)=-\sqrt{x}
$$

Summary of the Rigid Transformations

Function Notation	Description of Transformation
$\mathrm{g}(x)=f(x) \pm c$	Vertical shift up C units if C is positive
	Vertical shift down C units if C is negative

Function Notation	Description of Transformation
$g(x)=f(x \pm c)$	Horizontal shift left C units if C is positive.
	Horizontal shift right C units if C is negative
Function Notation	Description of Transformation
$\mathrm{g}(x)=-f(x)$	Reflected over the x -axis
$\mathrm{g}(x)=f(-x)$	Reflected over the y -axis

Did we meet our objectives?

