#### Thursday, February 5, 2015

#### Name the transformations that have been applied to parent function

 $1.\frac{1}{2}\sqrt{x-3}+2$ 

$$2(x+7)^3-4$$

Write the equation for the functions pictured in the graph and the location of each vertex.

3. (Blue)
4. (Red)
5. (Green)



## Objectives Solve Quadratic Expressions Using the Quadratic Formula.

Use the Discriminant to determine the number and type of roots for a quadratic function.

**Use graphing calculator to solve Quadratic Equations** 

Homework4-8 Complex Numbers Practice 38-41Extra Practice35-4355-63 oddDon't panic, we'll66-71do most of these in72-77class.

### Let's sing!



#### POP QUIZ!

#### Write the quadratic formula

 $-b \pm \sqrt{b^2 - 4ac}$ 2a

#### What's different about each of the graphs below?







Crosses x axis twice

Vertex on x axis

Does not cross the x axis

2 Real Roots

1 Repeated Root

#### No real roots

The **discriminant** of a quadratic equation tells us how many solutions (roots) exist for a given quadratic equation.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$|f b^2 - 4ac > 0 \qquad |f b^2 - 4ac = 0 \qquad |f b^2 - 4ac < 0|$$

positive 2 real roots 1 repeated real root

negative no real roots

```
Lets look at 3x^2 - 7x = -2
```

```
Put in standard form; 3x^2 - 7x + 2 = 0
```

The discriminant is  $b^2 - 4ac$ . For this equation, a = 3, b = -7 and c = 2

The discriminant for this equation is  $(-7)^2 - 4(3)(2) = 25$ .

What does that tell us?

Since 25 > 0 there are **two real roots**. Graph this equation

#### Lets look at $x^2 + 4x + 4 = 0$

The discriminant is  $b^2 - 4ac$ . For this equation, a = 1, b = 4 and c = 4

The discriminant for this equation is  $4^2 - 4(1)(4) = 0$ .

What does that tell us?

Since 0 = 0 there is **one real repeated root**.

#### Graph this equation

#### Lets look at $3x^2 - 4x + 10 = 0$

The discriminant is  $b^2 - 4ac$ . For this equation, a = 3, b = -4 and c = 10

The discriminant for this equation is  $(-4)^2 - 4(3)(10) = -104$ .

What does that tell us?

Since -104 < 0 there are no real roots!

Graph this equation

Find the discriminant of each equation and determine the number of real solutions.  $h^2 = 4 \alpha c$ 

$$b^2 - 4ac$$

$$1. -x^2 + 2x - 9 = 0 \qquad 2. x^2 + 17x + 4 = 0 \qquad 3. x^2 - 6x + 9 = 0$$

## Use the quadratic formula to find the roots of this equation.



$$3x^2 - 4x + 10 = 0$$

**Complex roots always come in pairs!** 

# You can use the graphing calculator to find the solutions to a quadratic equation.



Enter the equation  $x^2 - x - 6$  into  $y_1$ 

Press the graph button.

How many solutions? Type?



Enter 0 in  $y_2$ 





## Press 2<sup>nd</sup> TRACE and select 5:intersect

The cursor will be positioned on  $y_1$ . Press enter to select this function.

The cursor will jump to  $y_2$  which is the x axis. Press enter to select this function.









You will be asked for a guess. Just press enter again.



The intersection is one of the solutions. In this case it's x = -2



Now we repeat the process to find the other solution.

#### 2<sup>nd</sup> TRACE intersection

Move the cursor to the other side of the vertex. Then press enter.

Press enter twice. This is the second solution to this equation.





Second curve?

## So our two solutions are x = -2 and x = 3



1 1

Just for grins, verify the solutions using the quadratic formula.  $x^2 - x - 6$ 

$$x = \frac{1 \pm \sqrt{1 - 4(1)(-6)}}{2}$$
$$x = \frac{1 \pm \sqrt{25}}{2} = \frac{1 \pm 5}{2}$$
$$x = \frac{6}{2} = 3$$
$$x = \frac{-4}{2} = -2$$

1(1)(

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$