Name the transformations that have been applied to parent function

$$
\text { 1. } \frac{1}{2} \sqrt{x-3}+2
$$

$$
\text { 2. }(x+7)^{3}-4
$$

Write the equation for the functions pictured in the graph and the location of each vertex.
3. (Blue)
4. (Red)
5. (Green)

Objectives Solve Quadratic Expressions Using the Quadratic Formula.

Use the Discriminant to determine the number and type of roots for a quadratic function.

Use graphing calculator to solve Quadratic Equations

Homework 4-8 Complex Numbers Practice 38-41 Extra Practice 35-43

55-63 odd Don't panic, we'll
66-71
72-77 do most of these in class.

Write the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

What's different about each of the graphs below?

1.

Crosses x axis twice

2 Real Roots
b.

Vertex on x axis
c.

Does not cross the x axis

No real roots

The discriminant of a quadratic equation tells us how many solutions (roots) exist for a given quadratic equation.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If $b^{2}-4 a c>0$
positive
2 real roots

If $b^{2}-4 a c=0$
1 repeated real root

If $b^{2}-4 a c<0$
negative no real roots

Lets look at $3 x^{2-} 7 x=-2$
Put in standard form; $3 x^{2}-7 x+2=0$

The discriminant is $b^{2}-4 a c$.
For this equation, $a=3, b=-7$ and $c=2$

The discriminant for this equation is $(-7)^{2}-4(3)(2)=25$.

What does that tell us?
Since $25>0$ there are two real roots.
Graph this equation

Lets look at $x^{2}+4 x+4=0$

The discriminant is $b^{2}-4 a c$.
For this equation, $a=1, b=4$ and $c=4$

The discriminant for this equation is $4^{2}-4(1)(4)=0$.

What does that tell us?
Since $0=0$ there is one real repeated root.

Graph this equation

Lets look at $3 x^{2}-4 x+10=0$

The discriminant is $b^{2}-4 a c$.
For this equation, $a=3, b=-4$ and $c=10$

The discriminant for this equation is $(-4)^{2}-4(3)(10)=-104$.

What does that tell us?
Since $-104<0$ there are no real roots!

Graph this equation

Find the discriminant of each equation and determine the number of real solutions.

$$
b^{2}-4 a c
$$

1. $-x^{2}+2 x-9=0$
2. $x^{2}+17 x+4=0$

$$
\text { 3. } x^{2}-6 x+9=0
$$

Use the quadratic formula to find the roots of this equation.

$$
3 x^{2}-4 x+10=0
$$

Press $2^{\text {nd }}$ TRACE and select 5:intersect

The cursor will be positioned on y_{1}. Press enter to select this function.

The cursor will jump to y_{2} which is the x axis. Press enter to select this function.
CHLEDLHTE

You will be asked for a guess. Just press enter again.

The intersection is one of the solutions. In this case it's $x=-2$

Now we repeat the process to find the other solution.

So our two solutions are $x=-2$ and $x=3$

Just for grins, verify the solutions using the quadratic formula.

$$
x^{2}-x-6
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{1 \pm \sqrt{1-4(1)(-6)}}{2}
$$

$$
x=\frac{1 \pm \sqrt{25}}{2}=\frac{1 \pm 5}{2}
$$

$$
x=\frac{6}{2}=3
$$

$$
x=\frac{-4}{2}=-2
$$

