WARM UP

1. Put the equation $q=r^{s}$ in logarithmic form.
2. Write the expression $1 / 2 \log x+1 / 3 \log y-2 \log z$ as a single \log statement.
3. Find the inverse of the function $y=7 x+2$
4. Find the inverse of the function $y=7^{x}+2$

Objectives

- Define the 6 Trigonometric Ratios
- Use Trigonometric ratios to find side lengths and angle measures.
- Use the properties of the special triangles to find side lengths and angle measures.

Homework

- Problems on handout, All problems
- WBP 379 - 1-23 odd

Homework
Review

No homework last night!!!!

trig-o-nom-e-try 4 (trig-uh-nom-i-tree] Show IPA
noun
the branch of mathematics that deals with the relations between the sides and angles of plane or spherical triangles, and the calculations based on them.

Origin:

1605-15; \& Neo-Latin frigonometria; see triqon, -0-r -metry

But first, what could these equations possibly be?

$$
\begin{aligned}
& x(t)=(R+r) \cos (t)+p * \cos ((R+r) t / r) \\
& y(t)=(R+r) \sin (t)+p * \sin ((R+r) t / r)
\end{aligned}
$$

Click here for a hint...
Or here...

So what do you remember about SohCahToa

The Primary Trig Ratios

SOH	Sine = Opposite over $\underline{H} y p o t e n u s e$.	$\sin x=\frac{O}{H}$
CAH	Cosine $=\underline{A} d j a c e n t ~ o v e r ~ \underline{H y p o t e n u s e}$	$\cos x=\frac{A}{H}$
TOA	Iangent = Opposite over $\underline{\text { Adjacent. }}$	$\tan x=\frac{O}{A}$

SohCahToa

Find each of the ratios listed below.

$$
\begin{aligned}
& \sin x=\frac{12}{37} \\
& \cos x=\frac{35}{37} \\
& \tan x=\frac{12}{35}
\end{aligned}
$$

We also have three more trig functions

 The Reciprocal Identities$$
\sin x=\frac{\text { opposite }}{\text { hypotenuse }}
$$

$$
\cos x=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

$$
\begin{aligned}
& \csc x=\frac{\text { hypotenuse }}{\text { opposite }} \\
& \sec x=\frac{\text { hypotenuse }}{\text { adjacent }}
\end{aligned}
$$

$$
\tan x=\frac{\text { opposite }}{\text { adjacent }}
$$

$$
\cot x=\frac{\text { adjacent }}{\text { opposite }}
$$

For the triangle pictured below. Find each six trigonometric ratios for angle z.

$$
\begin{array}{ll}
\sin z=\frac{21}{35} & \csc z=\frac{35}{21} \\
\cos z=\frac{28}{35} & \sec z=\frac{35}{28} \\
\tan z=\frac{21}{28} & \cot z=\frac{28}{21}
\end{array}
$$

$$
\text { On page } 25 \text { of you hand out do problem number } 4
$$

4. In $\triangle A B C$, find each value as a fraction and as a decimal. Round to the nearest hundredth.
a. $\cos A$
$\cos A=\frac{\text { ADJ }}{\text { HYP }}=\frac{4}{5} \frac{4}{5}, 0.80$

b. $\csc A \frac{5}{3}, 1.67$
c. $\tan B \frac{4}{3}, 1.33$
d. $\sec B \frac{5}{3}, 1.67$
e. $\cot A \frac{4}{3}, 1.33$
f. $\csc B \frac{5}{4}, 1.25$
g. $\sin A \frac{3}{5}, 0.60$

For the triangle pictured below angle Z is 65°. Find the length of the missing sides.

Set up an equation with what you know

$$
\begin{aligned}
\sin (65) & =\frac{p}{10} \\
10 \sin (65) & =p \\
10(0.9063) & =p \\
9.06 & =p
\end{aligned}
$$

For the triangle pictured below angle Z is 65°. Find the length of the missing sides.

Now you find the length of side q.

$$
\begin{aligned}
\cos (65) & =\frac{q}{10} \\
10 \cos (65) & =q \\
10(0.4226) & =q \\
4.22 & =q
\end{aligned}
$$

Find each length x. Round to the nearest tenth.

6.

7.
 21.8
8. A weather balloon is attached to the ground by a $1000-\mathrm{ft}$ cord. The cord makes an angle of 72° with the ground. How high is the weather balloon to the nearest foot? 951 ft

Triangle ABC is a right triangle. Angle A is a 90 degree angle.

Given $\cos \theta=\frac{4}{11}$. Find the other five trigonometric ratios.

Use the Pythagorean Theorem to find the other side!

$$
\begin{gathered}
x^{2}+4^{2}=11^{2} \\
x=10.25
\end{gathered}
$$

5. In $\triangle P Q R, \angle R$ is a right angle and $\cos Q=\frac{12}{13}$. Find the values of the other five trigonometric functions of $\angle Q$ in fraction and in decimal form.

$$
\begin{aligned}
& \sin Q=\frac{5}{13} \approx 0.385, \tan Q=\frac{5}{12} \approx 0.417, \csc Q=\frac{13}{5}=2.6, \\
& \sec Q=\frac{13}{12} \approx 1.08, \cot Q=\frac{12}{5}=2.4
\end{aligned}
$$

Sketch a right triangle with θ as the measure of one acute angle. Find the other five trigonometric ratios of θ.

$$
\text { B } \csc \Theta=14 / 6
$$

Use the Pythagorean Theorem to find the other side!

$$
\begin{gathered}
x^{2}+6^{2}=14^{2} \\
x=12.25
\end{gathered}
$$

Now create the other 5 ratios
12. $\tan \theta=\frac{15}{8} \sin \theta=\frac{15}{17}, \cos \theta=\frac{8}{17}$, $\cot \theta=\frac{8}{15}, \csc \theta=\frac{17}{15}, \sec \theta=\frac{17}{8}$
14. $\sec \theta=5 \quad \sin \theta=\frac{2 \sqrt{6}}{5}, \cos \theta=\frac{1}{5}$, $\tan \theta=2 \sqrt{6}, \cot \theta=\frac{\sqrt{6}}{12}, \csc \theta=\frac{5 \sqrt{6}}{12}$
13. $\cos \theta=\frac{1}{4} \sin \theta=\frac{\sqrt{15}}{4}, \tan \theta=\sqrt{15}$, $\cot \theta=\frac{\sqrt{15}}{15}, \csc \theta=\frac{4 \sqrt{15}}{15}, \sec \theta=4$
15. $\cot \theta=\frac{2}{3} \quad \sin \theta=\frac{3 \sqrt{13}}{13}, \tan \theta=\frac{3}{2}$, $\cos \theta=\frac{2 \sqrt{13}}{13}, \csc \theta=\frac{\sqrt{13}}{3}, \sec \theta=\frac{\sqrt{13}}{2}$

In $\triangle D E F, \angle D$ is a right angle. Find the remaining sides and angles. Round answers to the nearest tenth.

$$
f=8 \text { and } e=15
$$

Use the Pythagorean Theorem to find the other side!

$$
\begin{gathered}
\qquad \begin{array}{c}
8^{2}+15^{2}=x^{2} \\
x=17
\end{array} \\
\text { Now what? How can we find }
\end{gathered}
$$ the angles?

In $\triangle D E F, \angle D$ is a right angle. Find the remaining sides and angles. Round answers to the nearest tenth.

We'll use the inverse trig functions.

$$
\sin ^{-1} \quad \cos ^{-1} \quad \tan ^{-1}
$$

These functions return an angle measure given a corresponding ratio.

$$
\begin{gathered}
\sin ^{-1}(8 / 17)=\Theta \\
\Theta=28.07
\end{gathered}
$$

In $\triangle D E F, \angle D$ is a right angle. Find the remaining sides and angles. Round answers to the nearest tenth.

On page 26 of your hand out do problems 9 and 10
9. $f=1, d=2$
$e=1.7 ; m \angle F=30^{\circ} ; m \angle E=60^{\circ}$
10. $e=6, d=12$
$f=10.4 ; m \angle F=60^{\circ} ; m \angle E=30^{\circ}$

Work on your homework

