• WARM UP

1. Put the equation $q = r^s$ in logarithmic form.

2. Write the expression $\frac{1}{2} \log x + \frac{1}{3} \log y - 2 \log z$ as a single log statement.

3. Find the inverse of the function y=7x + 2

4. Find the inverse of the function $y=7^{x}+2$

Objectives

 \bigcirc

- Define the 6 Trigonometric Ratios
- Use Trigonometric ratios to find side lengths and angle measures.
- Use the properties of the special triangles to find side lengths and angle measures.

Homework

- Problems on handout, All problems
- WBP 379 1-23 odd

Homework Review

No homework last night!!!!

trig-o-nom-e-try () [trig-uh-nom-i-tree] 👔 Show IPA

noun

 \bigcirc

the branch of mathematics that deals with the relations between the sides and angles of plane or spherical triangles, and the calculations based on them.

Origin:

1605-15; < Neo-Latin trigonometria; see trigon, -o-, -metry

But first, what could these equations possibly be?

 $x(t) = (R+r)\cos(t) + p * \cos((R+r)t/r)$ $y(t) = (R+r)\sin(t) + p * \sin((R+r)t/r)$

Click here for a hint...

Or here...

0

So what do you remember about **SohCahToa**

The Primary Trig Ratios

6

SOH	<u>S</u> ine = Opposite over Hypotenuse.	$\sin x = \frac{O}{H}$
САН	<u>C</u> osine = <u>A</u> djacent over <u>H</u> ypotenuse.	$\cos x = \frac{A}{H}$
ΤΟΑ	<u>T</u> angent = <u>O</u> pposite over <u>A</u> djacent.	$\tan x = \frac{O}{A}$

SohCahToa

Find each of the ratios listed below.

 \bigcirc

We also have three more trig functions The Reciprocal Identities

0

For the triangle pictured below. Find each six trigonometric ratios for angle z.

$\sin z = \frac{21}{35}$	$\csc z = \frac{35}{21}$
$\cos z = \frac{28}{35}$	$\sec z = \frac{35}{28}$
$\tan z = \frac{21}{28}$	$\cot z = \frac{28}{21}$

On page 25 of you hand out do problem number 4

4. In $\triangle ABC$, find each value as a fraction and as a decimal. Round to the nearest hundredth.

a.
$$\cos A$$
 $\cos A = \frac{ADJ}{HYP} = \frac{4}{5}$, 0.80

b.
$$\csc A = \frac{5}{3}$$
, **1.67 c.** $\tan B = \frac{4}{3}$, **1.33 d.** $\sec B = \frac{5}{3}$, **1.6**

В

7

e. $\cot A = \frac{4}{3}$, 1.33 f. $\csc B = \frac{5}{4}$, 1.25 g. $\sin A = \frac{3}{5}$, 0.60

For the triangle pictured below angle Z is 65°. Find the length of the missing sides.

Set up an equation with what you know

0

$$\sin(65) = \frac{p}{10}$$

 $10\sin(65) = p$

10(0.9063) = p

9.06 = p

For the triangle pictured below angle Z is 65°. Find the length of the missing sides.

Now you find the length of side q.

6

$$\cos(65) = \frac{q}{10}$$

 $10\cos(65) = q$

10(0.4226) = q

4.22 = q

On page 26 of your hand out do problems 6-8

Find each length *x*. Round to the nearest tenth.

0

8. A weather balloon is attached to the ground by a 1000-ft cord. The cord makes an angle of 72° with the ground. How high is the weather balloon to the nearest foot? 951 ft $\begin{bmatrix}
 B \\
 11 \\
 \theta
 \end{bmatrix}$ $A \qquad 4 \qquad C$

0

Triangle ABC is a right triangle. Angle A is a 90 degree angle.

Given $\cos \theta = \frac{4}{11}$. Find the other five trigonometric ratios.

Use the Pythagorean Theorem to find the other side!

 $x^2 + 4^2 = 11^2$

x=10.25

On page 26 of your hand out do problem 5

5. In $\triangle PQR$, $\angle R$ is a right angle and $\cos Q = \frac{12}{13}$. Find the values of the other five trigonometric functions of $\angle Q$ in fraction and in decimal form.

sin
$$Q = \frac{5}{13} \approx 0.385$$
, tan $Q = \frac{5}{12} \approx 0.417$, csc $Q = \frac{13}{5} = 2.6$,
sec $Q = \frac{13}{12} \approx 1.08$, cot $Q = \frac{12}{5} = 2.4$

Sketch a right triangle with θ as the measure of one acute angle. Find the other five trigonometric ratios of θ .

Use the Pythagorean Theorem to find the other side!

0

 $x^2 + 6^2 = 14^2$

x=12.25

Now create the other 5 ratios

On page 26 of your hand out do problems 12-15

12.
$$\tan \theta = \frac{15}{8} \sin \theta = \frac{15}{17}, \cos \theta = \frac{8}{17}, \cos \theta = \frac{8}{17}, \cot \theta = \frac{8}{15}, \csc \theta = \frac{17}{15}, \sec \theta = \frac{17}{8}$$

14.
$$\sec \theta = 5$$
 $\sin \theta = \frac{2\sqrt{6}}{5}$, $\cos \theta = \frac{1}{5}$,
 $\tan \theta = 2\sqrt{6}$, $\cot \theta = \frac{\sqrt{6}}{12}$, $\csc \theta = \frac{5\sqrt{6}}{12}$

13.
$$\cos \theta = \frac{1}{4} \sin \theta = \frac{\sqrt{15}}{4}, \tan \theta = \sqrt{15},$$

 $\cot \theta = \frac{\sqrt{15}}{15}, \csc \theta = \frac{4\sqrt{15}}{15}, \sec \theta = 4$
15. $\cot \theta = \frac{2}{3}$ $\sin \theta = \frac{3\sqrt{13}}{13}, \tan \theta = \frac{3}{2},$
 $\cos \theta = \frac{2\sqrt{13}}{13}, \csc \theta = \frac{\sqrt{13}}{3}, \sec \theta = \frac{\sqrt{13}}{2}$

In $\triangle DEF$, $\angle D$ is a right angle. Find the remaining sides and angles. Round answers to the nearest tenth.

 $\binom{1}{D} = \binom{1}{15} F$

0

Ε

f=8 and e=15

Use the Pythagorean Theorem to find the other side!

 $8^2 + 15^2 = x^2$

x = 17

Now what? How can we find the angles?

In $\triangle DEF$, $\angle D$ is a right angle. Find the remaining sides and angles. Round answers to the nearest tenth.

0

We'll use the inverse trig functions.

sin⁻¹ cos⁻¹ tan⁻¹

These functions return an angle measure given a corresponding ratio.

 $\sin^{-1}(8/_{17}) = \Theta$

 $\Theta = 28.07$

In $\triangle DEF$, $\angle D$ is a right angle. Find the remaining sides and angles. Round answers to the nearest tenth.

0

 $\Theta = 28.07$

Angle E is just **180 – 90 - 28.07 = 61.93**

On page 26 of your hand out do problems 9 and 10

9. f = 1, d = 2
e = 1.7; m∠F = 30°; m∠E = 60°

0

0

10. e = 6, d = 12 $f = 10.4; m \angle F = 60^{\circ}; m \angle E = 30^{\circ}$

Work on your homework

