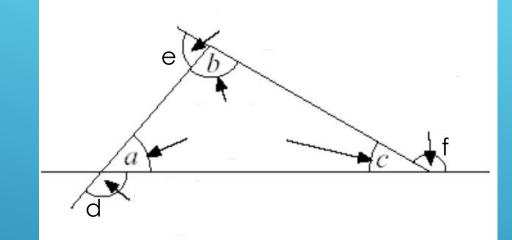
Tuesday, November 11, 2014



5

1. List the interior angles. 2. List the exterior angles. 3. a + b + c = ?4. a + d = ?5. a + b + d + 6. If a = 65/and e = 100, c = ?10 9

WARM UP

Packet pages 2-5 through 3-5. All circled problems.

OBJECTIVES...

Use properties of parallel lines and the relationships of their angles to solve problems.

Use properties of the interior and exterior angles of a triangle to solve missing angle problems.

Prove the Triangle Angle Sum Theorem

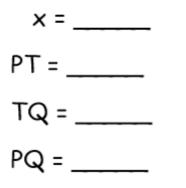
Geometry Pre-Assessment

Clear your desk and get out a pencil. You won't need a calculator.

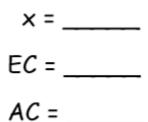
For problems 1 - 8, match the following terms with their corresponding picture.

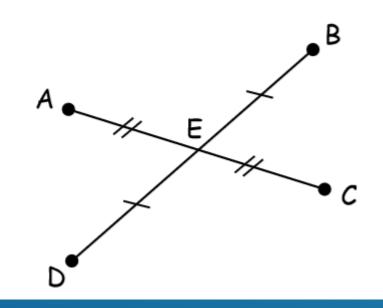
- 1. ____ Line AB a. 2. ____ Linear pair angles 3. ____ Coplanar points 4. ____ Congruent (symbol) h. f. 5. ____ Skew lines 6. ____ Complementary angles 7. ____ Segment bisector
- 8. ____ Angle bisector

9. If T is the midpoint of PQ, PT = 5x + 3, TQ = 7x - 9, find x, PT, TQ, and PQ. Draw the figure and show all work.



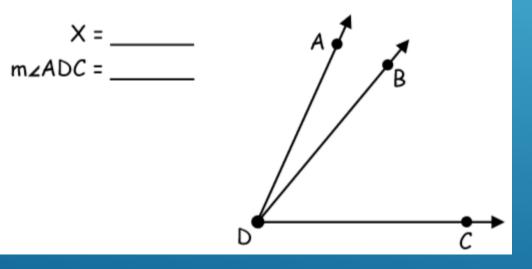
10. If AE = 12 and AC = 4x - 36, find x, EC, and AC.





11. If NS bisects \angle MNO, m \angle MNS = 24, and m \angle MNO = 4x - 12, find x and m \angle MNO. Draw the figure and show all work.

12. $m \ge ADC = 5x - 20$, $m \ge ADB = x - 4$, $m \ge BDC = x + 5$. Find x and $m \ge ADC$.

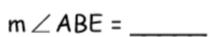


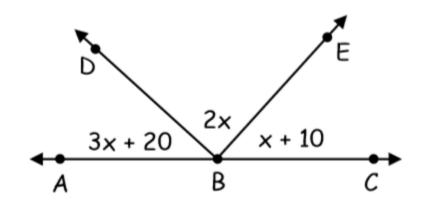
x = _____

m∠MNO = ____

13. In the picture to the right, find x and $m \angle ABE$.

x = _____

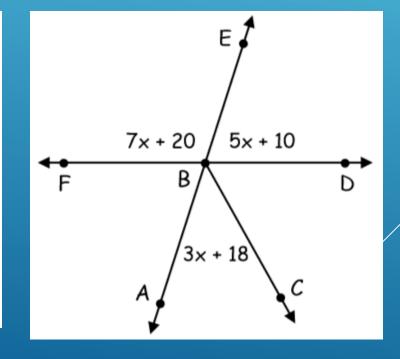




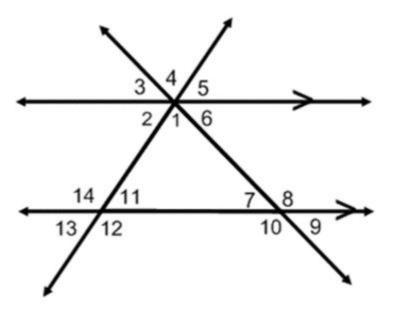
14. In the picture to the right, find x and $m \angle ABC$.

x = _____

m∠ABC = _____



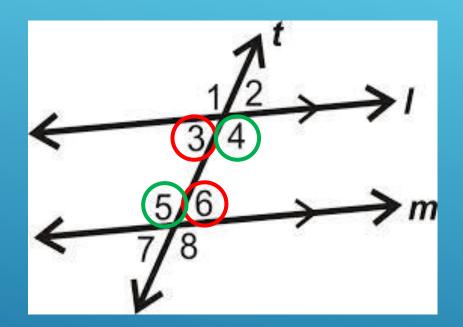
15. If the $m \angle 3 = 53^{\circ}$ and $m \angle 4 = 85^{\circ}$ find all the angles.



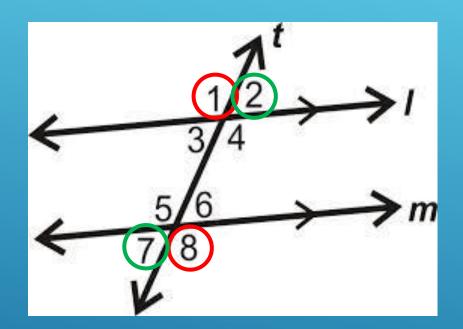
Explain how you determined $m \angle 7$.



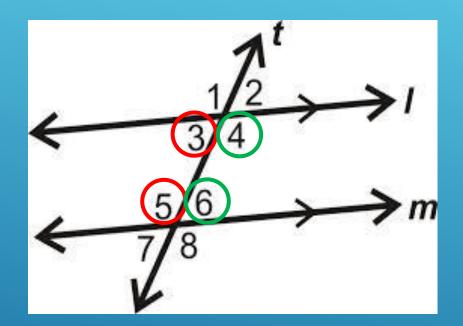
Corresponding Angles



Alternate Interior Angles

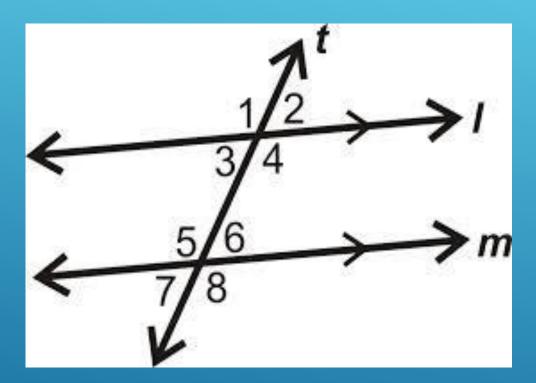


Alternate Exterior Angles



Same Side Interior Angles

Properties of Parallel Lines



Alternate Exterior Angles - Equal

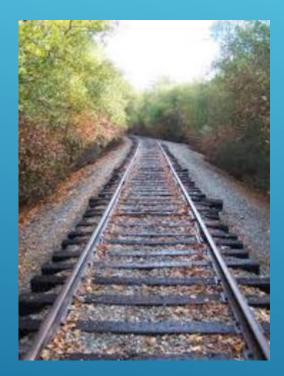
Alternate Interior Angles - Equal

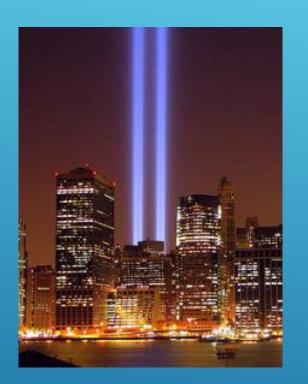
Same Side Interior Angles - Supplementary

Corresponding Angles - Ec

- Equal 🥖

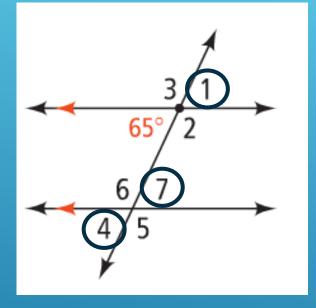
So why might we care if two lines are parallel?





We use these properties to solve problems.

Which angles have a measure of 65°?

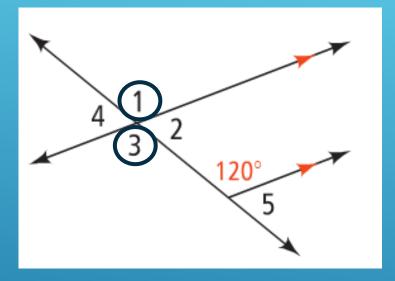


Vertical Angle Theorem

Corresponding Angle Theorem

Vertical Angle Theorem

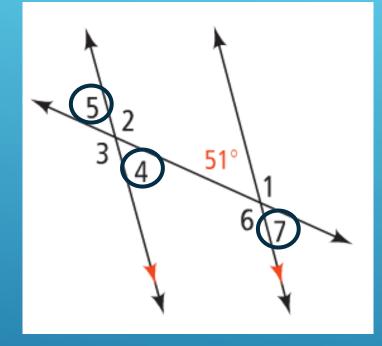
Which angles have a measure of 120°?

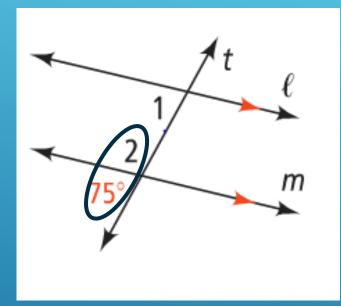


Corresponding Angles

Vertical Angles

Which angles have a measure of 51°?





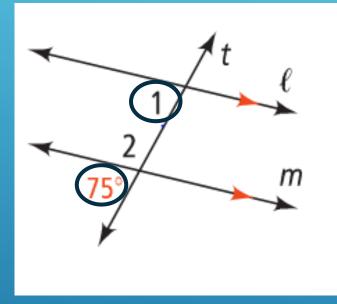
What do we know about these two angles? Supplementary Therefore $m \angle 2$ is equal to $180^{\circ} - 75^{\circ} = 105^{\circ}$

What do we know about angles 1 and 2?

Supplementary

Therefore $m \ge 1$ is equal to $180^{\circ} - m \ge 2 = 180^{\circ} - 105^{\circ} = 75^{\circ}$

A slightly different approach...



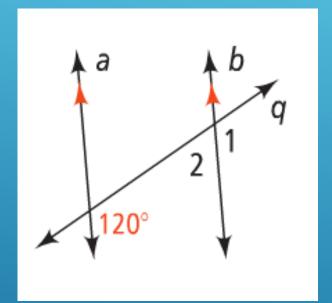
What do we know about these two angles? Congruent

Therefore $m \ge 1$ is equal to 75°

What do we know about angles 1 and 2?

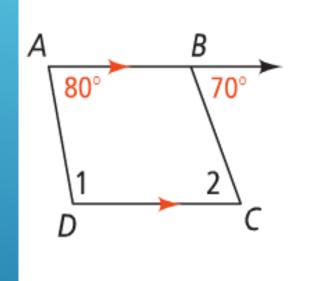
Supplementary

Therefore $m \ge 2$ is equal to $180^\circ - m \ge 1 = 180^\circ - 75^\circ = 105\%$



What do we know?

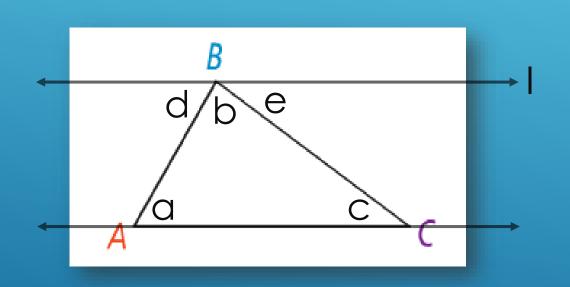
How can we use what we know?



What do we know?

How can we use what we know?

Remember this? The sum of the interior angles of a triangle is equal to 180°



How do we know?

We need the help of a parallel line.

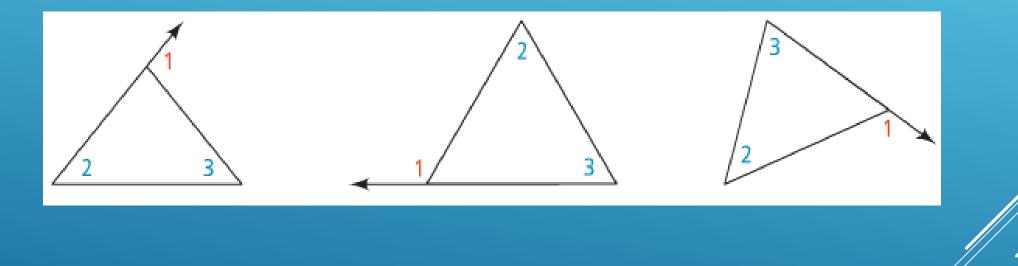
Let the line I be a line parallel to the base of the triangle ABC

line l line AC	given
$\angle e = \angle c$	Alternate interior angles
$\angle d = \angle a$	Alternate interior angles
$\angle b = \angle b$	Reflexive Property
$ad + \angle b + \angle e = 180$	Angle addition Property
$a + \angle b + \angle c = 180$	Substitution Property

More definitions

Exterior angle of a polygon: angle formed by a side and an extension of an adjacent side.

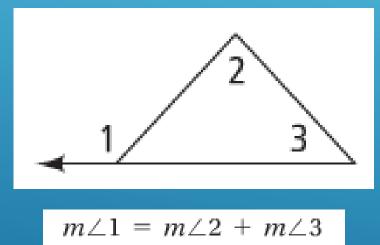
Remote interior angles: for each exterior angle of a triangle, the two non-adjacent interior angles



Which leads us to...

Triangle Exterior Angle Theorem

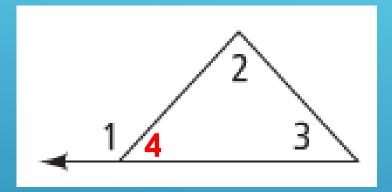
The measure of each exterior angle of a triangle is equal to the sum of the measures of its two remote interior angles.



Use what you know about interior angles and supplemental angles to prove this theorem.

Triangle Exterior Angle Theorem

Prove $m \angle 1 = m \angle 2 + m \angle 3$



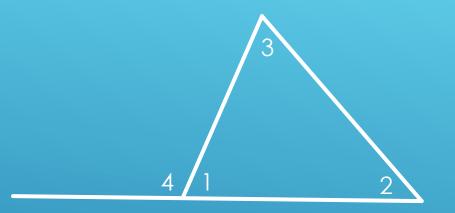
 $m \angle 1 + m \angle 4 = 180$ $m \angle 2 + m \angle 3 + m \angle 4 = 180$

definition of a linear pair sum of interior angles of a triangle transitive property subtraction property

 $m \angle 2 + m \angle 3 + m \angle 4 = m \angle 1 + m \angle 4$

 $m \angle 2 + m \angle 3 = m \angle 1$

Find the missing angle measures given...

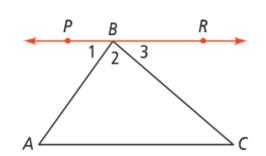


1. $m \angle 2 = 50^{\circ} \text{ and } m \angle 3 = 80^{\circ}$ 2. $m \angle 4 = 100^{\circ} \text{ and } m \angle 2 = 50^{\circ}$ 3. $m \angle 1 = 75^{\circ} \text{ and } m \angle 3 = 20^{\circ}$

Proof Proof of Theorem 3-10: Triangle Angle-Sum Theorem

Given: $\triangle ABC$

Prove: $m \angle A + m \angle 2 + m \angle C = 180$

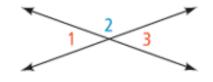


Statements	Reasons
1) Draw \overrightarrow{PR} through <i>B</i> , parallel to \overline{AC} .	1) Parallel Postulate
2) $\angle PBC$ and $\angle 3$ are supplementary.	2) 🖄 that form a linear pair are suppl.
3) $m \angle PBC + m \angle 3 = 180$	3) Definition of suppl. 🖄
4) $m \angle PBC = m \angle 1 + m \angle 2$	4) Angle Addition Postulate
5) $m \angle 1 + m \angle 2 + m \angle 3 = 180$	5) Substitution Property
6) $\angle 1 \cong \angle A \text{ and } \angle 3 \cong \angle C$	6) If lines are \parallel , then alternate interior \triangle are \cong .
7) $m \angle 1 = m \angle A$ and $m \angle 3 = m \angle C$	7) Congruent 🖄 have equal measure.
8) $m \angle A + m \angle 2 + m \angle C = 180$	8) Substitution Property

Proof of Theorem 2-1: Vertical Angles Theorem

Given: $\angle 1$ and $\angle 3$ are vertical angles.

Prove: $\angle 1 \cong \angle 3$



Statements	Reasons
1) $\angle 1$ and $\angle 3$ are vertical angles.	1) Given
 ∠1 and ∠2 are supplementary. ∠2 and ∠3 are supplementary. 	2) 🖄 that form a linear pair are supplementary.
3) $m \angle 1 + m \angle 2 = 180$ $m \angle 2 + m \angle 3 = 180$	3) The sum of the measures of supplementary
4) $m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$	4) Transitive Property of Equality
5) $m \angle 1 = m \angle 3$	5) Subtraction Property of Equality
6) ∠1 ≅ ∠3	6) \triangle with the same measure are \cong .