

1. List the interior angles.
2. List the exterior angles.
3. $a+b+c=$?
4. $a+d=$?
5. $a+b+d+\varepsilon=?$
6. If $a=65$ ond $e=100, c=$?
$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$ WARM UP

HOMEWORK

Packet pages 2-5 through 3-5. All circled problems.

OBJECTIVES...

Use properties of parallel lines and the relationships of their angles to solve problems.

Use properties of the interior and exterior angles of a triangle to solve missing angle problems.

Prove the Triangle Angle Sum Theorem

Geometry Pre-Assessment

Clear your desk and get out a pencil. You won't need a calculator.

Let's review

For problems 1-8, match the following terms with their corresponding picture.
1.__ Line $A B$
2.__ Linear pair angles
3.__ Coplanar points
4.___ Congruent (symbol)
5. \qquad Skew lines
6. \qquad Complementary angles
7. \qquad Segment bisector

8. \qquad Angle bisector

Let's review

9. If T is the midpoint of $\overline{P Q}, P T=5 x+3, T Q=7 x-9$, find $x, P T, T Q$, and $P Q$. Draw the figure and show all work.

$$
\begin{aligned}
& x= \\
& \mathrm{PT}= \\
& \mathrm{TQ}= \\
& \mathrm{PQ}==
\end{aligned}
$$

10. If $A E=12$ and $A C=4 x-36$, find $x, E C$, and $A C$.

$$
\begin{aligned}
x & = \\
E C & = \\
A C & =
\end{aligned}
$$

Let's review

11. If $\overrightarrow{N S}$ bisects $\angle M N O, m \angle M N S=24$, and $m \angle M N O=4 x-12$, find x and $m \angle M N O$. Draw the figure and show all work.

$$
\begin{aligned}
x & = \\
m \angle M N O & =
\end{aligned}
$$

12. $m \angle A D C=5 x-20, m \angle A D B=x-4, m \angle B D C=x+5$. Find x and $m \angle A D C$.

Let's review

13. In the picture to the right, find x and $m \angle A B E$.

$$
x=
$$

\qquad

$$
\mathrm{m} \angle A B E=
$$

14. In the picture to the right, find x and $m \angle A B C$.

$$
\begin{aligned}
x & = \\
m \angle A B C & =
\end{aligned}
$$

Let's review

15. If the $m \angle 3=53^{\circ}$ and $m \angle 4=85^{\circ}$ find all the angles.

Explain how you determined $m \angle 7$.

More Angles associated with a transversal

Corresponding Angles

More Angles associated with a transversal

Alternate Interior Angles

More Angles associated with a transversal

Alternate Exterior Angles

More Angles associated with a transversal

Same Side Interior Angles

Properties of Parallel Lines

Alternate Exterior Angles - Equal

Alternate Interior Angles - Equal

Same Side Interior Angles- Supplementan

So why might we care if two lines are parallel?

We use these properties to solve problems.

Which angles have a measure of 65° ?

Vertical Angle Theorem

Corresponding Angle Theorem
Vertical Angle Theorem

Which angles have a measure of 120° ?

Corresponding Angles

Vertical Angles

Which angles have a measure of 51° ?

Find the angle measure of angles 1 and 2.

What do we know about these two angles?
Supplementary
Therefore $m \angle 2$ is equal to $180^{\circ}-75^{\circ}=105^{\circ}$

What do we know about angles 1 and 2?
Supplementary
Therefore $m \angle 1$ is equal to $180^{\circ}-m \angle 2=180^{\circ}-105^{\circ}=75^{\circ}$

Find the angle measure of angles 1 and 2.

A slightly different approach...

Find the angle measure of angles 1 and 2.

What do we know?

How can we use what we know?

Find the angle measure of angles 1 and 2 .

What do we know?

How can we use what we know?

Remember this? The sum of the interior angles of a triangle is equal to 180°

How do we know?

We need the help of a parallel
 line.

Let the line I be a line parallel to the base of the triangle $A B C$
line l \| line $\overline{A C}$
$\angle e=\angle c$
$\angle d=\angle a$
$\angle b=\angle b$
$\angle d+\angle b+\angle e=180$
$\angle a+\angle b+\angle c=180$
given
Alternate interior gingles
Alternate interifor angles
Reflexive Property
Angle addition Property
Substitution Property

More definitions

Exterior angle of a polygon: angle formed by a side and an extension of an adjacent side.
Remote interior angles: for each exterior angle of a triangle, the two non-adjacent interior angles

Which leads us to...

Triangle Exterior Angle Theorem

The measure of each exterior angle of a triangle is equal to the sum of the measures of its two remote interior angles.

$m \angle 1=m \angle 2+m \angle 3$
Use what you know about interior angles and supplephental angles to prove this theorem.

Triangle Exterior Angle Theorem

Prove $m \angle 1=m \angle 2+m \angle 3$

definition of a linear pair

$$
\begin{aligned}
m \angle 1+m \angle 4 & =180 \\
m \angle 2+m \angle 3+m \angle 4 & =180 \\
m \angle 2+m \angle 3+m \angle 4 & =m \angle 1 \\
m \angle 2+m \angle 3 & =m \angle 1
\end{aligned}
$$

$m \angle 2+m \angle 3+m \angle 4=m \angle 1+m \angle 4 \quad$ transitive property
subtraction property
sum of interior angles of a triangle

Find the missing angle measures given...

1. $m \angle 2=50^{\circ}$ and $m \angle 3=80^{\circ}$
2. $m \angle 4=100^{\circ}$ and $m \angle 2=50^{\circ}$
3. $m \angle 1=75^{\circ}$ and $m \angle 3=20^{\circ}$

Proof Proof of Theorem 3-10: Triangle Angle-Sum Theorem

Given: $\triangle A B C$
Prove: $m \angle A+m \angle 2+m \angle C=180$

Statements

1) Draw $\overleftrightarrow{P R}$ through B, parallel to $\overline{A C}$.
2) $\angle P B C$ and $\angle 3$ are supplementary.
3) $m \angle P B C+m \angle 3=180$
4) $m \angle P B C=m \angle 1+m \angle 2$
5) $m \angle 1+m \angle 2+m \angle 3=180$
6) $\angle 1 \cong \angle A$ and $\angle 3 \cong \angle C$
7) $m \angle 1=m \angle A$ and $m \angle 3=m \angle C$
8) $m \angle A+m \angle 2+m \angle C=180$

Reasons

1) Parallel Postulate
2) $\boxed{\Delta}$ that form a linear pair are suppl.
3) Definition of suppl. $\&$
4) Angle Addition Postulate
5) Substitution Property
6) If lines are $\|$, then alternate interior $太 ⺀$ are \cong.
7) Congruent \varangle have equal measure.
8) Substitution Property
```
Proof of Theorem 2-1: Vertical Angles Theorem
Given: }\angle1\mathrm{ and }\angle3\mathrm{ are vertical angles.
Prove: }\angle1\cong\angle
```

Statements

1) $\angle 1$ and $\angle 3$ are vertical angles.
2) $\angle 1$ and $\angle 2$ are supplementary. $\angle 2$ and $\angle 3$ are supplementary.
3) $m \angle 1+m \angle 2=180$ $m \angle 2+m \angle 3=180$
4) $m \angle 1+m \angle 2=m \angle 2+m \angle 3$
5) $m \angle 1=m \angle 3$
6) $\angle 1 \cong \angle 3$

Reasons

1) Given
2) \triangle that form a linear pair are supplementary.
3) The sum of the measures of supplementary Ls is 180 .
4) Transitive Property of Equality
5) Subtraction Property of Equality
6) \measuredangle with the same measure are \cong.
