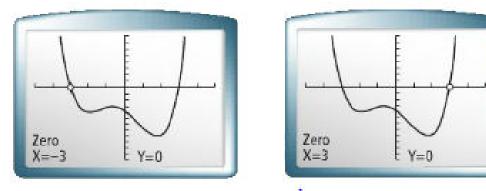
What does it mean to factor?

Concept Summary	Polynomial Factoring Techniques
Techniques	Examples
Factoring out the GCF	
Factor out the greatest common	$15x^4 - 20x^3 + 35x^2$
factor of all the terms.	$= 5x^2(3x^2 - 4x + 7)$
Quadratic Trinomials	
For $ax^2 + bx + c$, find factors with	$6x^2 + 11x - 10$
product <i>ac</i> and sum <i>b</i> .	= (3x - 2)(2x + 5)
Perfect Square Trinomials $a^2 + 2ab + b^2 = (a + b)^2$ $a^2 - 2ab + b^2 = (a - b)^2$	$x^{2} + 10x + 25 = (x + 5)^{2}$ $x^{2} - 10x + 25 = (x - 5)^{2}$
Difference of Squares	
$a^2 - b^2 = (a + b)(a - b)$	$4x^2 - 15 = (2x + \sqrt{15})(2x - \sqrt{15})$
Factoring by Grouping	
ax + ay + bx + by	$x^3 + 2x^2 - 3x - 6$
=a(x + y) + b(x + y)	$= x^{2}(x + 2) + (-3)(x + 2)$
= (a + b)(x + y)	$=(x^2-3)(x+2)$
Sum or Difference of Cubes	
$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$	$8x^3 + 1 = (2x + 1)(4x^2 - 2x + 1)$
$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$	$8x^3 - 1 = (2x - 1)(4x^2 + 2x + 1)$

When we factor, we're **<u>dividing</u>** the polynomial by what we are "factoring out"

What does it mean to factor?


Concept Summary	Polynomial Factoring Techniques
Techniques	Examples
Factoring out the GCF	
Factor out the greatest common	$15x^4 - 20x^3 + 35x^2$
factor of all the terms.	$= 5x^2(3x^2 - 4x + 7)$
Quadratic Trinomials	
For $ax^2 + bx + c$, find factors with	$6x^2 + 11x - 10$
product <i>ac</i> and sum <i>b</i> .	= (3x - 2)(2x + 5)
Perfect Square Trinomials $a^2 + 2ab + b^2 = (a + b)^2$ $a^2 - 2ab + b^2 = (a - b)^2$	$x^{2} + 10x + 25 = (x + 5)^{2}$ $x^{2} - 10x + 25 = (x - 5)^{2}$
Difference of Squares	
$a^2 - b^2 = (a + b)(a - b)$	$4x^2 - 15 = (2x + \sqrt{15})(2x - \sqrt{15})$
Factoring by Grouping	
ax + ay + bx + by	$x^3 + 2x^2 - 3x - 6$
=a(x + y) + b(x + y)	$= x^{2}(x + 2) + (-3)(x + 2)$
=(a+b)(x+y)	$=(x^2-3)(x+2)$
Sum or Difference of Cubes	
$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$	$8x^3 + 1 = (2x + 1)(4x^2 - 2x + 1)$
$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$	$8x^3 - 1 = (2x - 1)(4x^2 + 2x + 1)$

When we factor, we're **<u>dividing</u>** the polynomial by what we are "factoring out"

Finding All Zeros

What are the zeros of $f(x) = x^4 + x^3 - 7x^2 - 9x - 18$?

Step 1 Use a graphing calculator to find any real roots. The graph of $y = x^4 + x^3 - 7x^2 - 9x - 18$ shows real zeros at x = -3 and x = 3.

Step 2 Factor out the linear factors x + 3 and x - 3. Use synthetic division twice.

-3	1	1	-7	-9	-18	3	1	-2	-1	-6
17					18	90		3	3	6
	1	-2	-1	-6	0		1	1	2	0

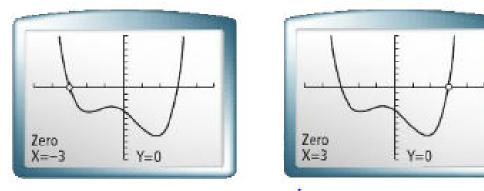
$$x^4 + x^3 - 7x^2 - 9x - 18 = (x + 3)(x^3 - 2x^2 - x - 6) = (x + 3)(x - 3)(x^2 + x + 2)$$

Step 3 Use the Quadratic Formula. Find the complex roots of $x^2 + x + 2 = 0$.

$$a = 1, b = 1, c = 2$$
 Identify the values of a, b, and c.

$$\frac{-1 \pm \sqrt{1^2 - 4(1)(2)}}{2(1)}$$
 Substitute.

$$\frac{-1 \pm \sqrt{-7}}{2}$$
 Simplify.


The complex roots are $\frac{-1 + i\sqrt{7}}{2}$ and $\frac{-1 - i\sqrt{7}}{2}$.

Step 4 The four zeros of the function are -3, 3, $\frac{-1 + i\sqrt{7}}{2}$, and $\frac{-1 - i\sqrt{7}}{2}$. By the Fundamental Theorem of Algebra, there can be no other zeros.

Finding All Zeros

What are the zeros of $f(x) = x^4 + x^3 - 7x^2 - 9x - 18$?

Step 1 Use a graphing calculator to find any real roots. The graph of $y = x^4 + x^3 - 7x^2 - 9x - 18$ shows real zeros at x = -3 and x = 3.

Step 2 Factor out the linear factors x + 3 and x - 3. Use synthetic division twice.

-3	1	1	-7	-9	-18	3	1	-2	-1	-6
					18			3	3	6
	1	-2	-1	-6	0		1	1	2	0

$$x^4 + x^3 - 7x^2 - 9x - 18 = (x + 3)(x^3 - 2x^2 - x - 6) = (x + 3)(x - 3)(x^2 + x + 2)$$

Step 3 Use the Quadratic Formula. Find the complex roots of $x^2 + x + 2 = 0$.

$$a = 1, b = 1, c = 2$$
 Identify the values of a, b, and c.

$$\frac{-1 \pm \sqrt{1^2 - 4(1)(2)}}{2(1)}$$
 Substitute.

$$\frac{-1 \pm \sqrt{-7}}{2}$$
 Simplify.

The complex roots are $\frac{-1 + i\sqrt{7}}{2}$ and $\frac{-1 - i\sqrt{7}}{2}$.

Step 4 The four zeros of the function are -3, 3, $\frac{-1 + i\sqrt{7}}{2}$, and $\frac{-1 - i\sqrt{7}}{2}$. By the Fundamental Theorem of Algebra, there can be no other zeros.