1. Simplify the expression $\left(6 y^{3}\right)^{2} y^{2}$
2. Simplify the expression $\frac{17 x^{3} y^{9}}{17 x^{2} y^{11}}$

3. Simplify the expression $\sqrt{75}$
4. Simplify the expression $\sqrt{128}$

Objectives
Give the graph of a function, define and identify the following characteristics of that function.

Domain/Range
Maximum / Minimums
Increasing/Decreasing Intervals
Vertexes
Intercepts, x and y

Homework

Finish the Domain and Range worksheet we start in class today. Problems P1 and P2 on the unit study guide,

What's the big deal?

The Ebola virus has been in the news for a while now.

The CDC will use functions to predict the spread rate of this deadly virus.

Why is that useful?

Processing

Output

Fabric Sewing Machine Jeans
Elapsed
Time
Population
Model

Predicted

Cases of Ebola

[^0]$f(x)$
y

Processing

Output

x
$f(x)$
y

Where is the dependent variable? Where is the independent variable?

A trip down memory lane...

A FUNCTION is a relation in which each input value corresponds with exactly one output value.

Another way to say this...

A FUNCTION is a relation in which each x value corresponds with exactly one y value.

Yet another way to say this...

A FUNCTION is a relation in which each element of the domain corresponds with exactly one element of the range.

We have a tool that lets us look at a graph to determine if a function is being represented.

The Vertical Line Test is one way to determine whether a relation is a function. If any vertical line intersects the graph of a relation in more than one point, the relation is not a function.

Which of the following graphs represent a function?

a.

X
b.

c.

YES
YES

Evaluate each function for the given value of x, and write the input and output $f(x)$ as an ordered pair.

$$
f(x)=-9 x-2 \text { for } x=7
$$

$$
f(x)=-\frac{12 x}{5} \text { for } x=-1
$$

$$
\begin{gathered}
f(7)=-9(7)-2=-65 \\
\text { Ordered pair: }(7,-65)
\end{gathered}
$$

$$
f(-1)=\frac{12}{5}
$$

Ordered pair: $\left(-1, \frac{12}{5}\right)$

Evaluate each function for the given value of x, and write the input and output $f(x)$ as an ordered pair.

$$
f(x)=-\frac{2 x+1}{3} \text { for } x=-5
$$

$$
f(x)=\frac{2}{9} x-\frac{9}{2} \text { for } x=9
$$

In Math Speak

A maximum is the highest point on the peak of a graph (peak).

A minimum is the lowest point on the valley of a graph (valley).

Maximum and Minimums are points so they are represented by a coordinate point, (x, y).

Maximums and Minimums

For the following function, identify any minimum(s) or maximum(s).

Maximum(s):

One maximum point at (-1,3.5)

Minimum(s):
One minimum point at (3.5, -2.25)

For the following function, identify any minimum(s) or maximum(s).

Maximum(s):

One maximum point at $(3,1)$

Minimum(s):
Two minimum points, $(-1,-7)$ and $(5,-1.25)$

Increasing, and Decreasing Intervals

In Math Speak

A function f is increasing on an interval if as x increases then $f(x)$ increases

A function f is decreasing on an interval if as x increases then $\mathrm{f}(\mathrm{x})$ decreases

When we write an interval, we put it in terms of the x values for which the interval is defined.

Always use the round brackets!

Another word about
Maximums and Minimums

The peaks and valleys are where a function changes from increasing to decreasing or vice versa.

For the following function, identify any increasing and decreasing intervals.

Increasing interval(s)
Two intervals, $(-\infty,-1)$ and $(3.5, \infty)$

Decreasing interval(s):
One interval, (-1, 3.5)

For the following function, identify any increasing and decreasing intervals.

Increasing interval(s)

Two intervals, $(-1,3)$ and (5, ∞)

Decreasing interval(s):
Two intervals, $(-\infty, 1)$ and $(3,5)$

For each function below find the intervals on which the function is increasing, and decreasing.

Increasing: ($-\infty, \infty$) Decreasing: n/a

Increasing: $(0, \infty)$
Decreasing: $(-\infty, 0)$

Intercepts

X Intercept: where a function crosses the x axis and $\mathrm{y}=0$.

Y Intercept: where a function crosses the y axis and $\mathrm{x}=0$.

Identify the following

Maximum(s)

Minimum(s)
Increasing Intervals
Decreasing Intervals
x Intercepts
y intercepts

Domain and Range

Domain	Range
Input	Output
x	y

Domain and Range are intervals.
Domain is the interval(s) of X values for which there is a corresponding Y value.
Range is the interval(s) of Y values for which the there is a corresponding X value.

Remember if there is no dot at the far ends of the graph then it goes on forever in that direction.

Work from left to right. (or smallest numbers to largest numbers)

Where is the first x value that has a corresponding y value?

Look at the x axis.
Lets look at Domain first
Continue tracing from left to right. (or smallest numbers to largest numbers)

Where is the last x value that has a corresponding y value?

Since we don't have one, the function goes on forever off to the right. We say the domain
 interval "ends" at ∞.

So the domain for this function is $(-3, \infty)$

Work from bottom to top. (or smallest numbers to largest numbers)

Where is the first y value that has a corresponding x value?

1

Look at the y axis.
Continue tracing from bottom to top.

Where is the last y value that has a corresponding x value?

Since we don't have one, the function goes on forever. We say the range interval "ends" at
 ∞.

So the range of this function is $(1, \infty)$

End behavior describes what goes on at the far ends of the graph.

It's written in the following format

$$
\begin{aligned}
& x \rightarrow \infty, y \rightarrow \text { something } \\
& x \rightarrow-\infty, y \rightarrow \text { something }
\end{aligned}
$$

And we say
as x approaches positive ∞, y approaches something as x approaches negative ∞, y approaches something

Look at the far Ends of the graph. There will always be two ends. :)

If the end is pointing up, it's going toward $+\infty$

If the end is pointing down, it's going toward $-\infty$

End Behavior

Now let's put it together

We see
As x approaches positive infinity y approaches negative infinity. As x approaches negative infinity y approaches positive infinity.

We write
$x \rightarrow \infty, y \rightarrow-\infty$

$x \rightarrow-\infty, y \rightarrow \infty$

End Behavior

Now let's put it together

We see
As x approaches positive infinity y approaches positive infinity. As x approaches negative infinity y approaches negative infinity.

We write

$x \rightarrow \infty, y \rightarrow \infty$
$x \rightarrow-\infty, y \rightarrow-\infty$

Wow! That's a lot.

Finish the table from the previous example.

Identify the following	
Maximum(s)	
Minimum(s)	
Increasing Intervals	
Decreasing Intervals	
x Intercepts	
y intercepts	
Domain	
Range	
End Behavior	

Wow! That's a lot.

Finish the table from the previous example.

| Identify the following | |
| :--- | :--- | :--- |
| Maximum(s) | |
| Minimum(s) | |
| Increasing Intervals | |
| Decreasing Intervals | |
| x Intercepts | |
| y intercepts | |
| Domain | |
| Range | |
| End Behavior | |

[^0]: x

