Factor the following numbers and expressions

1. 36
2. $36 x^{3}+48 x^{2}+24 x$

Multiply the following factors using either FOIL or Box Method
3. $(3 x-2)(x-1)$
4. $(x-2)(x+3)$

Objectives Recognize standard and vertex form of a quadratic equation.

Put quadratic equations in standard and vertex form.
Factor quadratic equations in standard form

Homework Packet Page 39: 4-20 EOE (every other even) Packet Page 40: 26, 28, 32, 33

Quadratic functions are transformations of the parent quadratic function, $\mathrm{y}=\mathrm{x}^{2}$.


The graph of all quadratic functions is a parabola.



The vertex form of a quadratic function is

$$
f(x)= \pm a(x-h)^{2}+k
$$

The axis of symmetry is a line that divides the parabola into two mirror images.

The equation of the axis of symmetry is $\boldsymbol{x}=\boldsymbol{h}$.

Vertex: $(0,-5)$
Axis of Symmetry: $(x=0)$
Function Equation: $f(x)=x^{2}-5$

The vertex of the parabola is $(\boldsymbol{h}, \boldsymbol{k})$, the intersection of the parabola and its axis of symmetry.


The vertex form of a quadratic function is

$$
f(x)= \pm a(x-h)^{2}+\boldsymbol{k}
$$

The axis of symmetry is a line that divides the parabola into two mirror images .

The equation of the axis of symmetry is $x=\boldsymbol{h}$.

Vertex: $(-2,0)$

Axis of Symmetry: $\quad x=-2$

The vertex of the parabola is $(\boldsymbol{h}, \boldsymbol{k})$, the intersection of the parabola and its axis of symmetry.

Function Equation: $f(x)=(x+2)^{2}$


The vertex form of a quadratic function is

$$
f(x)= \pm \boldsymbol{a}(x-h)^{2}+\boldsymbol{k}
$$

The axis of symmetry is a line that divides the parabola into two mirror images .

The equation of the axis of symmetry is $x=\boldsymbol{h}$.

Vertex: $(3,-4)$
Axis of Symmetry: $x=3$

The vertex of the parabola is $(\boldsymbol{h}, \boldsymbol{k})$, the intersection of the parabola and its axis of symmetry.

Function Equation: $f(x)=(x-3)^{2}-4$

The standard form of a quadratic function is

$$
f(x)=a x^{2}+b x+c
$$

$$
f(x)=2 x^{2}-8 x+1
$$

The axis of symmetry is a line that divides the parabola into two mirror images.
The equation of the axis of symmetry is $x=-\frac{b}{2 a} . \quad x=-\frac{-8}{2(2)}=2$

The x coordinate of the vertex is $-\frac{b}{2 a}$.

$$
x=2
$$

The $y$ coordinate of the vertex is $f\left(-\frac{b}{2 a}\right)$.

$$
\begin{aligned}
& \begin{array}{l}
y=f(2) \\
y=2(2)^{2}-8(2)+1 \\
y=-7 \\
\text { Vertex is }(2,-7)
\end{array}
\end{aligned}
$$

So what does all this have to do with factoring?

Factoring is a tool we use to find the $x$-intercepts of a quadratic function.

What is the $y$ value of the coordinates of any $x$-intercept?

X-intercepts are sometimes referred to as the zeros of a quadratic function or the roots.


Factoring is basically FOIL (or the box method) in reverse

$$
(x+2)(x+7)
$$

When we expand these factors we end up with

$$
x^{2}+9 x+14
$$

Our objective is to go from Standard form to Factored Form

$$
x^{2}+11 x+24
$$

| Factors of <br> 24 | Sum of the <br> factors |
| :---: | :---: |
| $1 \cdot 24$ | $1+24=25$ |
| $2 \cdot 12$ | $2+12=14$ |
| $3 \cdot 8$ | $3+8=11$ |
| $4 \cdot 6$ | $4+6=10$ |

So which factor pair becomes a part of our pair of factors?

$$
(x+\underline{3})(x+\underline{8})
$$

Our objective is to go from Standard form to Factored Form

$$
x^{2}-11 x+24
$$

| Factors of <br> 24 | Sum of the <br> factors |
| :---: | :---: |
| $(-1)(-24)$ | $-1-24=-25$ |
| $(-2)(-12)$ | $-2-12=-14$ |
| $(-3)(-8)$ | $-3-8=-11$ |
| $(-4)(-6)$ | $-4-6=-10$ |

So which factor pair becomes a part of our pair of factors?

$$
(x-\underline{3})(x-\underline{8})
$$

Step 3: Find factors of $a \cdot c$ that sum up to $b$.

| Factors of <br> $a \cdot c=30$ | Sum of the <br> factors |
| :---: | :---: |
| $1(-42)$ | $1-42=-41$ |
| $2(-21)$ | $2-21=-19$ |
| $3(-14)$ | $3-14=-11$ |
| $6(-7)$ | $6-7=-1$ |

Step 4: Replace $-11 x$ with the factors found in step 3.

Step 5: Group into two binomial terms.
Factor out the greatest common factor from each group.

Step 6: Factor out the greatest common factor from the expression.

AC Method for $\boldsymbol{a} \neq \mathbf{1}$
$6 x^{2}-11 x-7$

$$
6 x^{2}+3 x-14 x-7
$$

$$
\begin{gathered}
\left(6 x^{2}+3 x\right)+(-14 x-7) \\
3 x(2 x+1)+-7(2 x+1)
\end{gathered}
$$

$(2 x+1)(3 x-7)$

Step 3: Find factors of $a \cdot c$ that sum up to $b$.

| Factors of <br> $a \cdot c=30$ | Sum of the <br> factors |
| :---: | :---: |
| $1(-42)$ | $1-42=-41$ |
| $2(-21)$ | $2-21=-19$ |
| $3(-14)$ | $3-14=-11$ |
| $6(-7)$ | $6-7=-1$ |

Step 4: Set up the function factors with the factors identified in step 3. Divide each factor by the value of $a$ and simplify.

Step 5: Swing the denominator of any fractions remaining in front of the $x$ term in the factor.

## SWING Method for $a \neq 1$

$$
\begin{aligned}
& \left(x+\frac{3}{6}\right)\left(x+\frac{-14}{6}\right) \\
& \left(x+\frac{1}{2}\right)\left(x-\frac{7}{3}\right)
\end{aligned}
$$

$(2 x+1)(3 x-7)$
2.
4.
6. <br> \title{
Perfect Square Trinomials
} <br> \title{
Perfect Square Trinomials
}

$$
\begin{aligned}
& a^{2}+2 a b+b^{2}=(a+b)^{2} \\
& a^{2}-2 a b+b^{2}=(a-b)^{2}
\end{aligned}
$$

## For example...

$$
25 x^{2}-20 x+4=(5 x-2)^{2}
$$

But, if you don't recognize these, you can always factor using the methods you already know.

## Difference of Squares

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

$$
4 x^{2}-36=(2 x+6)(2 x-6)
$$

This one, you will need to be familiar with. Differences of squares show up a lot.
26. 28. 32.
33.

## Exit Ticket!

\#15 on page 39 of your packet.

