Factor the following numbers and expressions

1.36

 $2.36x^3 + 48x^2 + 24x$

Multiply the following factors using either FOIL or Box Method

3.
$$(3x-2)(x-1)$$

4. (x-2)(x+3)

Objectives Recognize standard and vertex form of a quadratic equation.

Put quadratic equations in standard and vertex form.

Factor quadratic equations in standard form

Homework Packet Page 39: 4-20 EOE (every other even) Packet Page 40: 26, 28, 32, 33

Quadratic functions are transformations of the parent quadratic function, $y=x^2$.

The graph of all quadratic functions is a **parabola.**

The vertex form of a quadratic function is $f(x) = \pm a(x - h)^2 + k$

The **axis of symmetry** is a line that divides the parabola into two mirror images .

The equation of the axis of symmetry is x = h.

Vertex: (0, -5)

Axis of Symmetry: (x = 0)

The vertex of the parabola is (h, k), the intersection of the parabola and its axis of symmetry.

Function Equation: $f(x) = x^2 - 5$

The vertex form of a quadratic function is $f(x) = \pm a(x - h)^2 + k$

The **axis of symmetry** is a line that divides the parabola into two mirror images .

The equation of the axis of symmetry is x = h.

Vertex: (-2, 0)

Axis of Symmetry: x = -2

The vertex of the parabola is (h, k), the intersection of the parabola and its axis of symmetry.

Function Equation: $f(x) = (x + 2)^2$

The vertex form of a quadratic function is $f(x) = \pm a(x - h)^2 + k$

The **axis of symmetry** is a line that divides the parabola into two mirror images .

The equation of the axis of symmetry is x = h.

Vertex: (3, -4)

Axis of Symmetry: x = 3

The vertex of the parabola is (h, k), the intersection of the parabola and its axis of symmetry.

Function Equation: $f(x) = (x - 3)^2 - 4$

The standard form of a quadratic function is $f(x) = ax^2 + bx + c$

$$f(x) = 2x^2 - 8x + 1$$

The **axis of symmetry** is a line that divides the parabola into two mirror images .

The equation of the axis of symmetry is $x = -\frac{b}{2a}$.

x = 2

The **x coordinate** of the **vertex** is $-\frac{b}{2a}$.

The **y** coordinate of the vertex is $f(-\frac{b}{2a})$.

y = f(2) $y = 2(2)^2 - 8(2) + 1$ y = -7Vertex is (2, -7) 5.

In your packets, do problems 5, 11 and 12 on page 20.

11. 12.

So what does all this have to do with factoring?

Factoring is a tool we use to find the x-intercepts of a quadratic function.

What is the y value of the coordinates of any x-intercept?

X-intercepts are sometimes referred to as the zeros of a quadratic function or the roots.

Factoring is basically FOIL (or the box method) in reverse

$$(x+2)(x+7)$$

When we expand these factors we end up with

 $x^2 + 9x + 14$

Our objective is to go from Standard form to Factored Form

$$x^2 + 11x + 24$$

Factors of 24	Sum of the factors
1.24	1 + 24 =25
2.12	2 + 12 =14
3.8	3 + 8 =11
4.6	4 + 6 =10

So which factor pair becomes a part of our pair of factors?

 $(x + \underline{3})(x + \underline{8})$

Our objective is to go from Standard form to Factored Form

$$x^2 - 11x + 24$$

Factors of 24	Sum of the factors
(-1)(-24)	-1 - 24 =-25
(-2)(-12)	-2 - 12 =-14
(-3)(-8)	-3 - 8 =-11
(-4)(-6)	-4 - 6 =-10

So which factor pair becomes a part of our pair of factors?

$$(x - \underline{3})(x - \underline{8})$$

AC Method for $a \neq 1$

 $6x^2 - 11x - 7$

Step 3: Find factors of a
$$\cdot$$
 c that sum up to b.

Factors of
$$a \cdot c = 30$$
Sum of the
factors $1(-42)$ $1 - 42 = -41$ $2(-21)$ $2 - 21 = -19$ $3(-14)$ $3 - 14 = -11$ $6(-7)$ $6 - 7 = -1$

Step 4: Replace -11x with the factors found in step 3.

$$6x^2 + 3x - 14x - 7$$

Step 5: Group into two binomial terms.

Factor out the greatest common factor from each group.

 $(6x^2 + 3x) + (-14x - 7)$ 3x(2x + 1) + -7(2x + 1)

Step 6: Factor out the greatest common factor from the expression.

(2x+1)(3x-7)

Step 3: Find factors of a \cdot c that sum up to b.

Factors of <u>a · c = 30</u>	Sum of the factors
1(-42)	1 - 42 = -41
2(-21)	2 - 21 = -19
3(-14)	3 - 14 = -11
6(-7)	6 - 7 = -1

Step 4: Set up the function factors with the factors identified in step 3. Divide each factor by the value of a and simplify.

Step 5: Swing the denominator of any fractions remaining in front of the x term in the factor.

SWING Method for $a \neq 1$

$$6x^2 - 11x - 7$$

(2x+1)(3x-7)

2.

In your packets, do problems 2, 4 and 6 on page 39.

4. 6.

Perfect Square Trinomials

$$a^2 + 2ab + b^2 = (a+b)^2$$

$$a^2 - 2ab + b^2 = (a - b)^2$$

For example...

 $25x^2 - 20x + 4 = (5x - 2)^2$

But, if you don't recognize these, you can always factor using the methods you already know.

Difference of Squares

 $a^2 - b^2 = (a+b)(a-b)$

$$4x^2 - 36 = (2x + 6)(2x - 6)$$

This one, you will need to be familiar with. Differences of squares show up a lot. 26.

In your packets, do problems 26, 28, 32 and 33 on page 40.

28. 32. 33.

#15 on page 39 of your packet.