WARM UP

1. Simplify (2 + 2i)(1 - i)

2. Solve (2 + xi) - (y - i) = 7 + 14i

3. What is the next term in the sequence a.) 5, 15, 25, ... b.) Y, W, U, S, ...

Homework Check

Sequence

An ordered list of numbers. Each number is a **term** of the sequence

The numbers in the sequence follow a certain pattern or rule.

For example 0, 10, 20, 30, 40, 50, 60, 70, ... is a sequence.

Each term is found by adding 10 to the previous term.

127, 140, 153, 166, ...

 $a_1, a_2, a_3, a_4, \ldots$ Check out the notation we will use for each term

First we have to determine if we actually have a sequence. We need to find the **Common Difference**.

Subtract each term from the previous term.

$$a_2 - a_1 = 140 - 127 = 13$$

$$a_3 - a_2 = 153 - 140 = 13$$

$$a_4 - a_3 = 166 - 153 = 13$$

Yes, we have an Arithmetic Sequence and the Common Difference is 13.

Explicit

In general terms, an Arithmetic Sequence with a starting value *a* and common difference *d* is a sequence of the form

a, a + d, a + 2d, a + 3d, ...

Remember our sequence?

```
127, 140, 153, 166, ...
Common Difference 13
```

 $127, 127 + 13, 127 + 2(13), 127 + 3(13), \dots$

An explicit definition of a sequence has the form

 $a_n = a + (n-1)d$, for $n \ge 1$

Where *a* is the first term and *d* is the common difference

Our rule is now $a_n = 127 + (n-1)13$, for $n \ge 1$

So what can we do with this rule?

Explicit

$$a_n = 127 + (n-1)13$$
, for $n \ge 1$

Answer questions like "What's the 10th term in the sequence 127, 140, 153, 166...?"

$$a_{10} = 127 + (10 - 1)13$$

 $a_{10} = 127 + (9)13$
 $a_{10} = 127 + 117$
 $a_{10} = 244$

YouDo

Pp 239

Determine if the following sequences are arithmetic. If so find the **explicit definition** of the sequence and calculate the 11th term.

4.) 3, 8, 13, 18 Common Difference is 5. $a_n = 3 + (n-1)5 = 5n - 2$ $a_{11} = 3 + (11 - 1)5 = 5(11) - 2 = 53$

10.) 11, 13, 17, 25

No, the difference between 17 and 25 is 8 and the difference between 11 and 13 is 2.

There is another way to write the rule for a sequence. A recursive definition has two parts.

Initial Condition $a_1 = a$

Recursive

Recursive Formula $a_{n+1} = a_n + d$, for $n \ge 1$

So for our sequence 127, 140, 153, 166, ... with a common difference of 13, the recursive definition is

Initial Condition $a_1 = a$

Recursive Formula $a_{n+1} = a_n + 13$, for $n \ge 1$

Not very useful... ask me why you need to know this.

Problem?

As a part-time home health care aide, you are paid a weekly salary plus a fixed fuel fee for every patient you visit. You receive \$240 in a week that you visit 1 patient. You receive \$250 in a week that you visit 2 patients. How much will you receive if you visit 12 patients in 1 week?

How many terms in the sequence of payments are you given? 2 What is the common difference between them? 250 - 240 = 10Write the explicit definition for this sequence of payments.

 $a_n = 240 + (n-1)10$, for $n \ge 1$

Use your rule to find the payment for a 12 patient week.

 $a_{12} = 240 + (12 - 1)10 = 350$

Definitions

A Sequence is an ordered list of numbers.

4, 8, 12, 16, 20

A Series is a sum of the terms of a Sequence 4 + 8 + 12 + 16 + 20 = 60

A Finite Series has a first and a last term 4 + 8 + 12 + 16 + 20

An Infinite Series continues without end.

 $4 + 8 + 12 + 16 + 20 \dots$

Formula

The sum S_n of a **finite** arithmetic series $a_1 + a_2 + a_3 + \dots + a_n$ is given by the formula

$$S_n = \frac{n}{2}(a_1 + a_n)$$

Where a_1 is the first term, a_n is the nth (last) term and n is the number of terms.

For example:

Find the sum of the series 11 + 13 + 15 + 17 + 19 + 21 + 23

$$S_7 = \frac{7}{2}(11 + 23)$$
$$S_7 = 119$$

YouDo

1.) Find the sum of the series 1 + 3 + 5 + 7 + 9

$$S_5 = \frac{5}{2}(1+9)$$

 $S_5 = 25$

What is the sum of the following finite arithmetic series? $4+9+14+19+24+\dots+99$

What do we know?

Tricky!

First term 4Last Term 99Formula

$$S_n = \frac{n}{2}(4+99)$$

What we don't know is the number of terms, n.

Step 1: Find the common difference. 9-4=5

Step 2: Use the common difference to find the number of terms.

$$n = \frac{last \ term \ - \ first \ term}{common \ difference} + 1 \qquad n = \frac{99 - 4}{5} + 1 = 20$$

Now we have everything we need to find the sum.

$$S_{20} = \frac{20}{2}(4+99) = 1030$$

What is the sum of the following finite arithmetic series? $5 + 8 + 11 + \dots + 26$

What do we know?

YouDo

First term 5 Last Term 26 Formula $S_n = \frac{n}{2}(5+26)$

What we don't know is the number of terms, n.

Step 1: Find the common difference. 8-5=3

Step 2: Use the common difference to find the number of terms.

$$n = rac{last \ term \ -first \ term}{common \ difference} + 1$$
 $n = rac{26-5}{3} + 1 = 8$

$$S_8 = \frac{8}{2}(5+26) = 124$$

Notation

A series can be represented in a compact form called **Summation** notation (or sigma notation).

To represent "the summation from 1 to 4 of 3n we would write

$$\sum_{n=1}^{4} 3n = 3(1) + 3(2) + 3(3) + 3(4)$$
$$= 3 + 6 + 9 + 12$$
$$= 30$$

N is always an integer and in incremented by 1

Finding the sum of a series in Summation notation

Find the sum of the finite series $\sum_{n=1}^{40} (3n-8)$

Notation

Look at the formula for a Finite Arithmetic Series. We have everything we need!

1. How many terms? n = 40

2. Find the first term

3. Find the last term

4. Fill in the formula

$$a_{1} = 3(1) - 8 = -5$$

$$a_{40} = 3(40) - 8 = 112$$

$$S_{40} = \frac{40}{2} (-5 + 112)$$

$$S_{40} = 2140$$

 $S_n = \frac{\binom{n}{2}}{\binom{n}{2}}(a_1 + a_n)$

Finding the sum of a series in Summation notation

YouDo

Find the sum of the finite series $\sum_{n=1}^{4} (n-1)$

Look at the formula for a Finite Arithmetic Series. We have everything we need!

$$S_n = \frac{n}{2}(a_1 + a_n)$$

1. How many terms? n = 4

2. Find the first term $a_1 = (1) - 1 = 0$

3. Find the last term $a_4 = (4) - 1 = 3$

4. Fill in the formula

$$a_4 = (4) - 1 = 3$$
$$S_4 = \frac{4}{2}(0 + 3)$$

 $S_4 = 6$

Converting to Summation Notation

Write the following series in summation notation 4 + 8 + 12 + 16

1. Find the common difference d = 4

2. Find the first term

3. Use the explicit formula for a sequence and simplify.

4. Fill in what you know

$$a_{n} = a + (n - 1)a$$

$$a_{4} = 4 + (n - 1)4$$

$$a_{4} = 4 + 4n - 4$$

$$a_{4} = 4n$$

$$\sum_{n=1}^{4} 4n$$

*a*₁ = 4

Converting to Summation Notation

YouDo

Write the following series in summation notation 1+11+21+31+41+51+61

1. Find the common difference d = 10

2. Find the first term

 $a_1 = 1$

3. Use the explicit formula for a sequence and simplify.

$$a_n = a + (n - 1)d$$

 $a_7 = 1 + (n - 1)10$
 $a_7 = 10n - 9$

4. Fill in what you know

$$\sum_{n=1}^{7} 10n - 9$$

What can you do on you calculator?

You can find the sum of a sequence on your graphing calculator!

Look at problem 23 on page 247

$$\sum_{n=1}^{13} n+3$$

What can you do on you calculator?

You can find the sum of a sequence on your graphing calculator!

Look at problem 27 on page 247

$$\sum_{n=1}^{50} n^2 - 4n$$

2nd STAT MATH 5: sum

2nd STAT OPS seq

YouDo

Expression, variable, start, end))

Work on your homework