WARM UP

1. Simplify $(2+2 i)(1-i)$
2. Solve $(2+x i)-(y-i)=7+14 i$
3. What is the next term in the sequence a.) $5,15,25, \ldots$ b.) Y, W, U, S, \ldots

Write a formula for an Arithmetic Sequence Find the sum of an Arithmetic Series

Evaluate a series in Summation notation
WBP 239: 11-19 odd, 33, 46 b-d
WBP 247: $1,3,5,8,10,24,26$
? ?OMPWOPR
?OMPWOPR
?OMPWOPR
?OMPWOPR
?OMPWOPR HoMework (HoMework

监监

foreworn
HoMework
Homework P
\qquad
\qquad
\qquad

\qquad
 (

\qquad Homework Check
Homework Check
Homework Check
Homework Check
Homework Check
Homework
Homework Check
Homework Check
Homework Check
Homework Check
Homework Check
\qquad
Homework Check
Homework
Homework

Homework Check
Homework
Homework
\qquad
\qquad
\qquad

Homework check
Homework Check
Homework
Homework Check
HoMework Check
Homework Check
Homework Check
Homework Check
?
Homework Check
Homework Check

Abstract

Homework Check

20,

(2)

Sequence

An ordered list of numbers. Each number is a term of the sequence
The numbers in the sequence follow a certain pattern or rule.
For example $0,10,20,30,40,50,60,70, \ldots$ is a sequence.
Each term is found by adding 10 to the previous term.

Defining the RULE for a Sequence

$127,140,153,166, \ldots$
$a_{1}, \quad a_{2}, \quad a_{3}, \quad a_{4}, \ldots \quad$ Check out the notation we will use for each term
First we have to determine if we actually have a sequence. We need to find the Common Difference.

Subtract each term from the previous term.

$$
\begin{aligned}
& a_{2}-a_{1}=140-127=13 \\
& a_{3}-a_{2}=153-140=13 \\
& a_{4}-a_{3}=166-153=13
\end{aligned}
$$

Yes, we have an Arithmetic Sequence and the Common Difference is 13.

Defining the RULE for a Sequence

In general terms, an Arithmetic Sequence with a starting value \boldsymbol{a} and common difference \boldsymbol{d} is a sequence of the form

$$
a, a+d, a+2 d, a+3 d, \ldots
$$

Remember our sequence?

$$
127,127+13,127+2(13), 127+3(13), \ldots
$$

An explicit definition of a sequence has the form

$$
a_{n}=a+(n-1) d, \text { for } n \geq 1
$$

Where \boldsymbol{a} is the first term and \boldsymbol{d} is the common difference
Our rule is now

$$
a_{n}=127+(n-1) 13, \text { for } n \geq 1
$$

So what can we do with this rule?

$$
a_{n}=127+(n-1) 13, \text { for } n \geq 1
$$

Answer questions like "What's the $10^{\text {th }}$ term in the sequence 127, 140, 153, 166...?"

$$
\begin{aligned}
& a_{10}=127+(10-1) 13 \\
& a_{10}=127+(9) 13 \\
& a_{10}=127+117 \\
& a_{10}=244
\end{aligned}
$$

4.) $3,8,13,18$

Common Difference is 5. $a_{n}=3+(n-1) 5=5 n-2$

$$
a_{11}=3+(11-1) 5=5(11)-2=53
$$

10.) $11,13,17,25$

No, the difference between 17 and 25 is 8 and the difference between 11 and 13 is 2 .

There is another way to write the rule for a sequence. A recursive definition has two parts.

$$
\text { Initial Condition } \quad a_{1}=a
$$

Recursive Formula

$$
a_{n+1}=a_{n}+d, \text { for } n \geq 1
$$

So for our sequence $127,140,153,166, \ldots$ with a common difference of 13 , the recursive definition is

$$
\text { Initial Condition } \quad a_{1}=a
$$

Recursive Formula

$$
a_{n+1}=a_{n}+13, \text { for } n \geq 1
$$

Not very useful... ask me why you need to know this.

As a part-time home health care aide, you are paid a weekly salary plus a fixed fuel fee for every patient you visit. You receive $\$ 240$ in a week that you visit 1 patient. You receive $\$ 250$ in a week that you visit 2 patients. How much will you receive if you visit 12 patients in 1 week?

How many terms in the sequence of payments are you given? 2
What is the common difference between them? $250-240=\mathbf{1 0}$
Write the explicit definition for this sequence of payments.

$$
a_{n}=240+(n-1) 10, \text { for } n \geq 1
$$

Use your rule to find the payment for a 12 patient week.

$$
a_{12}=240+(12-1) 10=350
$$

A Sequence is an ordered list of numbers.

$$
4,8,12,16,20
$$

A Series is a sum of the terms of a Sequence

$$
4+8+12+16+20=60
$$

A Finite Series has a first and a last term

$$
4+8+12+16+20
$$

An Infinite Series continues without end.

$$
4+8+12+16+20 \ldots
$$

The sum S_{n} of a finite arithmetic series $a_{1}+a_{2}+a_{3}+\cdots+a_{n}$ is given by the formula

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

Where a_{1} is the first term, a_{n} is the $n^{\text {th }}$ (last) term and n is the number of terms.

For example:

Find the sum of the series $11+13+15+17+19+21+23$

$$
\begin{aligned}
& S_{7}=\frac{7}{2}(11+23) \\
& S_{7}=119
\end{aligned}
$$

1.) Find the sum of the series $1+3+5+7+9$

$$
\begin{aligned}
& S_{5}=\frac{5}{2}(1+9) \\
& S_{5}=25
\end{aligned}
$$

What is the sum of the following finite arithmetic series?

$$
4+9+14+19+24+\cdots+99
$$

What do we know?
First term 4 Last Term 99 Formula $S_{n}=\frac{n}{2}(4+99)$
What we don't know is the number of terms, n.
Step 1: Find the common difference. $\quad 9-4=5$
Step 2: Use the common difference to find the number of terms.

$$
n=\frac{\text { last term }- \text { first term }}{\text { common difference }}+1 \quad n=\frac{99-4}{5}+1=20
$$

Now we have everything we need to find the sum.

$$
S_{20}=\frac{20}{2}(4+99)=1030
$$

What is the sum of the following finite arithmetic series?

$$
5+8+11+\cdots+26
$$

What do we know?
First term 5 Last Term 26 Formula $S_{n}=\frac{n}{2}(5+26)$
What we don't know is the number of terms, n.
Step 1: Find the common difference. $8-5=3$
Step 2: Use the common difference to find the number of terms.

$$
\begin{gathered}
n=\frac{\text { last term }- \text { first term }}{\text { common difference }}+1 \quad n=\frac{26-5}{3}+1=8 \\
S_{8}=\frac{8}{2}(5+26)=124
\end{gathered}
$$

A series can be represented in a compact form called Summation notation (or sigma notation).

To represent "the summation from 1 to 4 of $3 n$ we would write

$$
\begin{aligned}
\sum_{n=1}^{4} 3 n & =3(1)+3(2)+3(3)+3(4) \\
& =3+6+9+12 \\
& =30
\end{aligned}
$$

N is always an integer and in incremented by 1

Finding the sum of a series in Summation notation
Find the sum of the finite series $\sum_{n=1}^{40}(3 n-8)$
Look at the formula for a
Finite Arithmetic Series. We have everything we need!

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

1. How many terms? $\quad n=40$
2. Find the first term $\quad a_{1}=3(1)-8=-5$
3. Find the last term $\quad a_{40}=3(40)-8=112$
4. Fill in the formula $\quad S_{40}=\frac{40}{2}(-5+112)$
$S_{40}=2140$

Finding the sum of a series in Summation notation
Find the sum of the finite series $\sum_{n=1}^{4}(n-1)$
Look at the formula for a
Finite Arithmetic Series. We have everything we need!

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

1. How many terms? $\quad n=4$
2. Find the first term $\quad a_{1}=(1)-1=0$
3. Find the last term

$$
a_{4}=(4)-1=3
$$

4. Fill in the formula

$$
\begin{aligned}
& S_{4}=\frac{4}{2}(0+3) \\
& S_{4}=6
\end{aligned}
$$

Converting to Summation Notation

Write the following series in summation notation

$$
4+8+12+16
$$

1. Find the common difference

$$
d=4
$$

2. Find the first term

$$
a_{1}=4
$$

3. Use the explicit formula for a sequence and simplify.

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
a_{4} & =4+(n-1) 4 \\
a_{4} & =4+4 n-4 \\
a_{4} & =4 n
\end{aligned}
$$

4. Fill in what you know

$$
\sum_{n=1}^{4} 4 n
$$

Converting to Summation Notation

Write the following series in summation notation

$$
1+11+21+31+41+51+61
$$

1. Find the common difference

$$
d=10
$$

2. Find the first term

$$
a_{1}=1
$$

3. Use the explicit formula for a sequence and simplify.

$$
\begin{aligned}
& a_{n}=a+(n-1) d \\
& a_{7}=1+(n-1) 10 \\
& a_{7}=10 n-9
\end{aligned}
$$

4. Fill in what you know

$$
\sum_{n=1}^{7} 10 n-9
$$

What can you do on you calculator？

You can find the sum of a sequence on your graphing calculator！
Look at problem 23 on page 247

$$
\sum_{n=1}^{15} n+3
$$

$2^{\text {nd }}$ STAT MATH 5：sum
NHRES DF＂S WFTH 1：mirs 2： m x 人

4：musti ar
5月：
Gorrond
F．＝tallew
E——
$2^{\text {nd }}$ STAT OPS seq
HFMES［DFTE MATH
1：SOrth
2：Sortcic

4：Fi116
료튿

アれかList

Expression，variable，start，end））
 $15>$
 $15)$ 16.5

You can find the sum of a sequence on your graphing calculator!
Look at problem 27 on page 247

$$
\sum_{n=1}^{50} n^{2}-4 n
$$

$2^{\text {nd }}$ STAT MATH 5: sum
$2^{\text {nd }}$ STAT OPS seq

Expression, variable, start, end))

Work on your homework

