Simplify the following expressions
Thursday, February 5, 2015
2. $\sqrt{864 x^{3} y^{4}}$
3. $\sqrt{90 q^{7}}$

Objectives Use the properties of imaginary numbers to simplify expressions.

Use the Discriminant to determine the number and type of roots for a quadratic function.

Homework 4-8 Practice, 1, 3, 5, 10-27 odd

THE QUADRATIC FORMULA

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Solve $x^{2}+4 x=12$ using the quadratic formula.

Step 1: Put the equation in standard form. $\quad x^{2}+4 x-12=0$

Step 2: Find the values of a, b, and $c . \quad a=1, b=4, c=-12$
Step 3: Substitute a, b, and c into the formula

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-4 \pm \sqrt{4^{2}-4(1)(-12)}}{2(1)}
\end{aligned}
$$

Step 4: Simplify

$$
x=\frac{-4 \pm \sqrt{16+48}}{2}=\frac{-4 \pm \sqrt{64}}{2}=\frac{-4 \pm 8}{2}=\frac{-4}{2} \pm \frac{8}{2}=-2 \pm 4
$$

Step 5: Final answer(s) $\quad-2+4=2$ and $-2-4=-6$

Solve $x^{2}+2 x=-5$ using the quadratic formula.

Step 1: Put the equation in standard form.

Step 2: Find the values of a, b, and c.

Step 3: Substitute a, b, and c into the formula

Step 4: Simplify

Step 5: Determine final answer(s)
Using the quadratic formula causes us to take the square root of a negative.

Graphically we know it means that there are no x intercepts.

Algebraically this means we have complex roots.

Let's talk about imaginary numbers.

Home for imaginary numbers...

Remember getting your hand slapped when you tried to take the square root of a negative number?

Well thanks to imaginary numbers, you'll never have to worry about that again.

Now we'll starting thinking like this...

$$
\sqrt{-4}=\sqrt{(-1)(4)}=2 \sqrt{-1}
$$

But we're going to let the symbol i represent $\sqrt{-1}$ and write

$$
\sqrt{-4}=2 i
$$

Be rational
π is the ratio between circumference and diameter shared by all circles. e is the base rate of growth shared by all continually growing processes.
i is the is the square root of negative 1.

We can perform mathematical operations on i.

$$
\begin{gathered}
i^{0}=1 \\
i^{1}=\sqrt{-1}=i \\
i^{2}=(\sqrt{-1})(\sqrt{-1})=-1 \\
i^{3}=\left(i^{2}\right)(i)=(-1)(i)=-i
\end{gathered}
$$

Simplifying numbers using i

Write $\sqrt{-18}$ using the imaginary unit.

Simplifying numbers using i

Write $\sqrt{-25}$ using the imaginary unit.

Write $\sqrt{-12}$ using the imaginary unit.

Write $\sqrt{-7}$ using the imaginary unit.

Complex Numbers, not so complex

a and b are real numbers
If $a=0 \quad$ the number is $a+b i$ is a pure imaginary number
If $a \neq 0$ and $b=0$ the number is $a+b i$ is a real number
If $a \neq 0$ and $b \neq 0$ the number is $a+b i$ is a complex number

A little math humor.

After having dinner together a one mathematician asked the other "How was your meal"?
"Great but $\frac{\sqrt{-1}}{8}$."
"Yeah," said the other, "I over 8 too."

Adding and subtracting Complex Numbers

Simplify $(4-3 \mathrm{i})+(-4+3 \mathrm{i})$

Simplify $(5-3 i)-(-2+4 i)$

Find Each sum or difference

1. $(7-2 i)+(-3+i)$
2. $(8+6 i)-(8-6 i)$
3. $(1+5 i)-(3-2 i)$

$$
\text { 4. }(-3+9 i)+(3+9 i)
$$

Multiplying Complex Numbers

Simplify (3i) $(-5+2 \mathrm{i})$

Simplify $(4+3 i)(-1-2 i)$

Find Each Product

1. (7i)(3i)

$$
\text { 2. }(2-3 i)(4+5 i)
$$

3. $(-4+5 i)(-4-5 i)$

What did you notice about the last problem?

The product was a real number.

$$
(-4+5 i)(-4-5 i)
$$

Both terms in each factor are identical.
The sign (or operation) in each factor is the opposite of the other factor.

We call these conjugates. In this case, they are complex conjugates.

Dividing Complex Numbers

$$
\text { Simplify } \frac{2+3 i}{1-4 i}
$$

Multiply numerator and denominator by the complex conjugate of the denominator, $1+4 \mathrm{i}$.

Substitute - 1 for i^{2}

Dividing Complex Numbers

Simplify $\frac{9+12 i}{3 i}$

Multiply numerator and denominator by the complex conjugate of the denominator, $-3 i$.

Substitute - 1 for i^{2}

Find Each Quotient

1. $\frac{5-2 i}{3+4 i}$
2. $\frac{4-i}{6 i}$
3. $\frac{8-7 i}{8+7 i}$

Let's look at this one again. Use the quadratic formula to find the roots of this equation.

$$
3 x^{2}-4 x+10=0
$$

Find the discriminant of each equation and determine the number of real solutions.

$$
\text { 1. }-x^{2}+2 x-9=0
$$

$$
\text { 2. } x^{2}+17 x+4=0
$$

$$
\text { 3. } x^{2}-6 x+9=0
$$

Solve the following equations using the Quadratic Formula.

1. $x^{2}+12 x+35=0$
2. $2 x^{2}+3=7 x$
