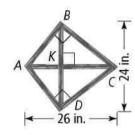
Class _____

Date

Extra Practice (continued)


Chapter 4

Lesson 4-5

Solve each equation by factoring, by taking square roots, or by graphing. When necessary, round your answer to the nearest hundredth.

35. $x^2 + 4x - 1 = 0$	36. $4x^2 - 100 = 0$	37. $x^2 = -2x + 1$
38. $x^2 - 9 = 0$	39. $2x^2 + 4x = 70$	40. $x^2 - 30 = 10$
41. $x^2 + 4x = 0$	42. $x^2 + 3x + 2 = 0$	43. $x^2 = 8x = -16$

- **44**. Hal's sister is 5 years older than Hal. The product of their ages is 456. How old are Hal and his sister?
- **45.** A toy rocket is fired upward from the ground. The relation between its height *h*, in feet, and the time *t* from launch, in seconds, can be described by the equation $h = -16t^2 + 64t$. How long does the rocket stay more than 48 feet above the ground?
- **46.** The expression $P(x) = 2500x 2x^2$ describes the profit of a company that customizes bulldozers when it customizes *x* bulldozers in a month.
 - **a.** How many bulldozers per month must the company customize to make the maximum possible profit? What is the maximum profit?
 - **b.** Describe a reasonable domain and range for the function P(x).
 - c. For what number of bulldozers per month is the profit at least \$750,000?
- **47.** Flor is designing a kite with two perpendicular crosspieces that are 26 inches and 24 inches long, as shown in the figure. How long should \overrightarrow{Ak} be so that $\overrightarrow{AB} \perp \overrightarrow{BC}$ and $\overrightarrow{AD} \perp \overrightarrow{DC}$?
- **48.** The lengths of the sides of a right triangle are x, x + 4, and x + 8 inches. What is the value of x? What is the length of the hypotenuse of the triangle?

Lessons 4-6 and 4-7

Put each equation in vertex form. For even problems, complete the square.

49. $x^2 + 5x + 8 = 4$	50. $2x^2 - 5x + 1 = 0$	51. $x^2 - 7x = 0$
52. $x^2 + 4x + 4 = 0$	53. $x^2 - 7 = 0$	54. $x^2 + 8x - 17 = 0$

Prentice Hall Algebra 2 • Extra Practice Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

Extra Practice (continued)

Chapter 4

Evaluate the discriminant of each equation. Tell how many real solutions each equation has.

- **56.** $2x^2 + x = -1$ **57.** $x^2 - 4x + 5 = 0$ **55.** $x^2 + 4x = 17$ **59.** $x^2 - 19 = 1$ **58.** $2x^2 + 5x = 0$ **60.** $3x^2 = 8x - 4$ **63.** $x^2 + 16 = 0$ **61.**– $2x^2 + 1 = 7x$ **62.** $4x^2 + 4x = -1$
- **64.** The height y of a parabolic arch is given by $y = -\frac{1}{16}x^2 + 40$, where x is the

horizontal distance from the center of the base of the arch. All distances are in feet.

- **a.** What is the highest point on the arch?
- **b.** How wide is the arch at the base to the nearest tenth of a foot?
- 65. An archer's arrow follows a parabolic path. The path of the arrow can be described by the equation $y = -0.005x^2 + 2x + 5$.
 - **a.** Describe the meaning of the *y*-intercept of the graph of the equation.
 - b. What is the horizontal distance the arrow travels before it hits the ground? Round your answer to the nearest foot.

Lesson 4-8

Simplify each number by using the imaginary number *i*.

66. √−9	67. √-36	68. √ <u>-80</u>
69. √-289	70. √-175	71. √–117

Simplify each expression.

72. (3 − <i>i</i>) + (5 − 2 <i>i</i>)	73. $(4+2i)(1-i)$	74. (4 + 2 <i>i</i>) – (3 + 5 <i>i</i>)
75. (8 – 3 <i>i</i>)(6 + 9 <i>i</i>)	76. $(2+5i) - (-6+i)$	77. $(-2 - 3i)(7 - i)$

Solve each equation. Check your answers.

Prentice Hall Algebra 2 • Extra Practice

Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.